希少原子核の高効率・高分解能質量測定による新しい魔法数34の確証

ad
ad

2018/07/10 東京大学 理化学研究所 大阪大学 東京都市大学

発表のポイント

  • 新しい魔法数(注1)として提案されている34個を超えた中性子を含むカルシウム同位体、カルシウム-55, 56, 57(注2)の質量を精密測定し、質量の変化の分析から「魔法数34」の発現を確証した。
  • 高速イオンの質量を高効率・高分解能で測定する手法を開発し、生成確率が非常に小さく、短い時間しか存在しない原子核であるカルシウム-55から57までの精密質量測定に成功した。
  • 不安定な原子核を含む全ての原子核の成り立ちについての統一的な理解が進み、超新星爆発や中性子星合体(注3)における重元素合成過程(注4)の解明、安定の島(注5)に向かう超重元素の構造的理解の基礎となることが期待される。

発表概要

東京大学理学系研究科附属原子核科学研究センター、理化学研究所仁科加速器科学研究センター、大阪大学核物理研究センター、東京都市大学、京都大学、九州大学、立教大学、東京理科大学、ノートルダム大学、ミシガン州立大学からなる国際共同研究グループは、カルシウムの同位体で新たに提案されている「魔法数34」より多くの中性子を含む原子核の質量を世界で初めて精密測定し、質量の変化量の分析から魔法数34の発現を確証しました。

原子核は陽子と中性子からできていますが、含まれる陽子や中性子の個数を変化させたとき、その質量の変化は必ずしも滑らかでないことが知られています(図1)。

図1.重いカルシウム同位体の二中性子分離エネルギー。準位間のエネルギーが一定のときには、二中性子分離エネルギーは一定となるが、魔法数を超えて中性子が増えた時には二中性子分離エネルギーが急に小さくなる。

急な質量変化が現れる中性子や陽子の数は「魔法数」と呼ばれ、量子力学の効果として知られています。具体的な魔法数の数値は、原子核に含まれる陽子や中性子の間に働く力の性質で決まり、自然界に安定に存在しない原子核(不安定核(注6))では、これまで知られていた数と異なる魔法数が予言されています。

研究グループは、新しい魔法数が現れると提案されているカルシウム-54よりもさらに中性子を多くもつカルシウム-55, 56, 57の質量を高効率・高分解能で測定し、それらの質量差から34が新しい魔法数であることを確証しました。

新魔法数34の定量的な確証が示された今回の結果を礎に、人類未踏の希少原子核を含む全ての原子核の存在範囲や安定性についての理解が深まり、中性子星合体での重元素合成過程やニホニウムを超える超重核の構造解明が進むことが期待されます。

発表内容

背景
自然界にある物質の質量の大部分を担う原子核は、陽子と中性子により構成され、量子力学に支配されたとびとびのエネルギー準位構造を持っています。陽子や中性子は、エネルギーが低い準位から順番に詰まっていき、アインシュタインの示した「エネルギーと質量の等価性」から、構成された陽子と中性子の質量とそれらが収まっている準位のエネルギーの総和が原子核の質量となります。「魔法数」とは、準位間のエネルギー差が特に大きくなる陽子・中性子の構成数で、魔法数をもつ原子核が安定なのは、そのエネルギー差を超えるのにより大きなエネルギーを必要とするためです。魔法数の安定性は、中性子の数に対する原子核質量の増加量として現れ、定量的に評価することができます。

量子力学の世界に生まれる魔法数は、まず原子でメンデレーエフによって発見されました。原子核の魔法数は、原子核を司る核力(注7)と原子を司る電磁気力の性質が違うため、原子の魔法数とは異なります。原子核の魔法数が2, 8, 20, 28, 50, 82, 126であり、それらが核力の特徴によって決まっていることを説明した、メイヤーとイェンセンは1963年にノーベル賞を受賞しています。近年になり、陽子数と中性子数のバランスが極端に崩れた不安定核が人工的に生成できるようになると、そのバランスに依存して、今まで普遍的性質であると思われていた魔法数が消えたり、新しい魔法数が出現したりする現象が発見されました。

膨大な陽子数と中性子数の組み合わせをもつ原子核存在領域のどこで、どのくらいの安定性をもった魔法数が現れるのかに答えることは、私たちに身近な原子核から人類未知の原子核まですべての原子核の成り立ちを理解するうえでの一里塚であり、知識の基盤となっています。

研究手法と成果
今回の成果は、東京大学と理化学研究所の包括的連携協定のもと、東京大学大学院理学系研究科附属原子核科学研究センターと理化学研究所仁科加速器科学研究センターが共同で建設したSHARAQ(シャラク)磁気分析装置(注8)を用いた実験により実施されました。理化学研究所仁科加速器科学研究センターの重イオン加速器施設であるRIビームファクトリー(注9)において、超伝導リングサイクロトロン(SRC) で亜鉛-70 (Zn-70) を光速の約70%まで加速、超伝導RIビーム生成分離装置(BigRIPS)を用いて光速の約60%で飛行する重いカルシウム、カルシウム-55, 56, 57を生成しました。これら重いカルシウムの質量は、105メートルにわたるBigRIPS装置からSHARAQ装置全体を用いた磁気剛性-飛行時間法にて決定しました(図2)。

図2. 今回の高効率・高分解能質量測定に用いたBigRIPS-SHARAQ実験装置

飛行時間法は一定距離の飛行時間から質量を測定する、遺伝子やタンパク質の解析等にも広く使われている質量分析手法ですが、今回もちいた磁気剛性-飛行時間法は、高分解能磁気分析装置SHARAQと最新鋭の放射線センサーとを組み合わせることによって、より高効率で高い質量分解能を持つ質量測定手法を実現しました。生成された不安定原子核は1原子核ごとにBigRIPSからSHARAQまで約200万分の1秒の飛行時間をCVDダイヤモンド検出器(注10)を使用して1000億分の1秒の精度で測定、SHARAQを使って測定した磁気剛性(注11)と組み合わせて希少原子核の質量を決定しました。さらに位置感度100ミクロンの多線式ドリフトチェンバー(注12)で、BigRIPS-SHARAQ内の飛行軌道を再構成し、低雑音・高分解能化に成功、29個分の測定データでカルシウム-57の質量を決定することができました。

原子核質量の変化の割合から、同じ34個の中性子を持った原子核(同調体)の間で安定性がどのように成長し、魔法数となったかを初めて捉えることができました。カルシウム-54は同じ中性子数34をもつチタン-56やスカンジウム-55と比較して安定性が大きく、スカンジウムからカルシウムへ、1つの陽子が抜けることで中性子数34が急激に魔法数化していることがわかりました。一方で、中性子36個の同調体であるカルシウム-56は、ニッケル-64から安定性の変化は見られず、カルシウム-54の特殊性が実証されました。(図3)。

タイトルとURLをコピーしました