深層学習を用いた重要代謝物探索法

ad
ad

2018年1月24日 理化学研究所

要旨

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダーと伊達康博研究員の研究チームは、深層学習(DL)[1]に着目してメタボロミクス[2]研究に最適化した「DLアルゴリズム」を開発しました。実際に、魚類の核磁気共鳴(NMR)[3]データを解析し高精度な産地判別が可能なことを示し、この判別に寄与する重要代謝物探索法も確立しました。

2016年、DLを基盤とする人工知能(AI)[4]が囲碁の世界チャンピオンに勝利したニュースが世間を騒がせたように、AIは社会構造の変革に寄与する革新的技術といわれています。生物学や化学などの分野においても、AIやDLの潜在能力は注目されてはいるものの、本格的に利活用されているとはいえません。

今回、研究チームは、DLにおける基幹的な計算アルゴリズム[5]であるディープニューラルネットワーク(DNN)[6]に着目し、メタボロミクス研究における解析に適用できるよう最適化し、モデルに対して重要な因子となる代謝物を特定できる「DLアルゴリズム」を開発しました。そして、再現性や機関間互換性[7]の高い、多数のビッグデータの取得に向くNMR法で取得した1,000を超える魚肉抽出物のNMRデータセットに対して、判別分析や種々の機械学習[8]を実施し、DLアルゴリズムの解析結果と比較しました。その結果、DLアルゴリズムが最も高精度に産地を判別し、さらに、産地判別に寄与する重要因子[9](本研究では代謝物)を探索できることを実証しました。

タイトルとURLをコピーしました