量子もつれを利用した単一マグノンの検出~超伝導量子ビットを使った新しい量子センサーの開発に成功

ad
ad

2020-01-24   東京大学,理化学研究所,科学技術振興機構

ポイント
  • マグノンと呼ばれる強磁性体中に励起するエネルギー量子たった1個を単一試行で検出する技術を開発した。
  • 単一マグノンの検出は、超伝導量子ビットと強磁性体中のマグノンとの間の量子もつれを生成することで実現した。
  • 磁性体中のマグノンを単一マグノンのレベルで量子制御できる道を開くとともに、宇宙のダークマター検出などへの応用が期待される。

ダニー・ラチャンス・クイリオン 日本学術振興会外国人特別研究員(研究当時)、東京大学 先端科学技術研究センターの中村 泰信 教授らの研究グループは、量子コンピューターの基本素子である超伝導量子ビット注1)を用い、新しい量子センサーを開発しました。この量子センサーは動作原理に量子もつれ注2)現象を利用しており、これによってマグノンと呼ばれる強磁性結晶内スピンの集団励起のエネルギー量子をたった1個、単一試行測定注3)で検出できるようになりました。これは、量子光学分野における単一光子検出器注4)の機能に比肩するものです。従来の磁性分野でのマグノンに関する実験的研究は膨大な数のマグノンを対象としたものでしたが、本研究成果は単一マグノンのレベルで磁性体中の集団スピンを観測・制御する量子的な実験的研究を加速するとともに、未踏の非古典的なマグノン状態を生成する道を切り開く礎となることが期待されます。応用面では、開発した量子センサーの高感度を生かし、宇宙におけるダークマターの候補の1つであるアクシオン注5)の検出などに使われることも期待されます。

本成果は、2020年1月24日(米国時間)に米国科学誌「Science」オンライン版に掲載される予定です。

本研究の一部は、科学技術振興機構(JST) 戦略的創造研究推進事業 総括実施型研究(ERATO)「中村巨視的量子機械プロジェクト」(研究総括:中村 泰信、JPMJER1601)、FRQNT国際インターンシッププログラム(カナダ)、文部科学省 国費外国人留学生制度、日本学術振興会 科学研究費補助金および外国人研究者招へい事業(外国人特別研究員)による支援を受けて行われました。

<研究の背景>

強磁性体は、膨大な数の電子がそのスピンの向きを集団として自発的にそろえた巨視的なスピンと見なすことができます。この巨視的なスピンの向きは、有限の温度では熱的に、絶対零度でも量子力学の不確定性原理に従って揺らぐことになります。この巨視的なスピンの揺らぎは、量子力学の枠組みではマグノンと呼ばれ、1個、2個と数えられる離散的な準粒子として扱うことができます。これは、電磁波を量子化すると1個、2個と数えられる光子として扱えることに似ています。これまでのマグノンに関する実験的研究は、検出感度の制限から、マグノンが量子化されていることが顕在化しないような膨大な数のマグノンを対象にしたものでした。単一光子検出器が開発されたことにより光子1個のレベルで光を観測・制御する量子光学という分野が開花したことに鑑みれば、単一マグノン検出器の開発は、マグノン1個のレベルで磁性体を観測・制御する新しい分野創出の可能性を示唆していました。

<研究の内容と成果>

これまでに中村教授らの研究グループは、量子コンピューターの基本素子として用いられる超伝導量子ビットとマイクロ波共振器内のマイクロ波光子との間で量子もつれを生成・制御・観測する研究を推進してきました。この研究を発展させ、2015年に超伝導量子ビットとミリメートルサイズの強磁性結晶試料内のキッテルモード注6)と呼ばれる均一スピン歳差運動モードが、マイクロ波の空洞共振器モードを介してコヒーレントに結合することで生じるエネルギー分裂の観測に成功し[Y. Tabuchi et al., Science 349, 405 (2015)]、さらに2017年にはマグノンの個数に応じた超伝導量子ビットの共鳴エネルギーの離散的なシフトの観測にも成功していました[D. Lachance-Quirion et al., Sci. Adv. 3, e1603150 (2017)]。これらの超伝導量子ビットの分光実験を背景に、今回、単一マグノンの存在を超伝導量子ビットの単一試行による読み出しで検出する量子センサーの開発に挑みました。これまでの分光実験とは異なり、測定対象となるキッテルモード中の単一マグノンに対する超伝導量子ビットの応答感度が最も高くなるように、測定系をマイクロ波パルス列で時間的に制御する必要がありました。その実現には多くの困難が伴いましたが、これまでの超伝導量子ビットの時間的な制御実験の知見を生かすことでそれらを克服し、今回の成果に至りました。単一マグノン検出の実現は、量子光学分野での単一光子検出器の機能に比肩するものです。本研究で開発した量子センサーは、マグノンがミリメートルサイズの強磁性結晶試料内にたった1個励起している状態を約70パーセントという高い効率で単一試行測定により検出できます。今後、磁性物理実験を量子の世界で実施する上で非常に重要な役割を担うことが期待されます。

タイトルとURLをコピーしました