振動するダイヤモンドのX線画像が量子センシングの道を開く(X-ray imagery of vibrating diamond opens avenues for quantum sensing)

ad

2024-08-07 アルゴンヌ国立研究所(ANL)

コーネル大学の研究チームは、ダイヤモンド内の原子振動を詳細にマッピングし、量子センサーの精度向上に貢献しました。研究では音波を使ってダイヤモンドを振動させ、その振動とスピン(原子の特性)の関係を数学的に定義しました。これにより、ダイヤモンドの特定部位での振動を精密に測定し、スピンの操作方法を明確にしました。この手法は、医療やナビゲーション、宇宙科学などでの応用が期待され、量子情報科学の重要な進展とされています。研究成果は「Physical Review Applied」に発表されました。

<関連情報>

ストロボスコープX線回折顕微鏡でダイヤモンド薄膜バルク音響共振器の動的歪みを観察し、窒素空孔中心の量子制御を目指す Stroboscopic x-ray diffraction microscopy of dynamic strain in diamond thin-film bulk acoustic resonators for quantum control of nitrogen-vacancy centers

Anthony D’Addario, Johnathan Kuan, Noah F. Opondo, Ozan Erturk, Tao Zhou, Sunil A. Bhave, Martin V. Holt, and Gregory D. Fuchs
Physical Review Applied  Published:Published 7 August 2024
DOI:https://doi.org/10.1103/PhysRevApplied.22.024016

振動するダイヤモンドのX線画像が量子センシングの道を開く(X-ray imagery of vibrating diamond opens avenues for quantum sensing)

Abstract

Bulk-mode acoustic waves in a crystalline material exert lattice strain through the thickness of the sample, which couples to the spin Hamiltonian of defect-based qubits such as the nitrogen-vacancy (N-V) center defect in diamond. This mechanism has previously been harnessed for unconventional quantum spin control, spin decoherence protection, and quantum sensing. Bulk-mode acoustic wave devices are also important in the microelectronics industry as microwave filters. A key challenge in both applications is a lack of appropriate operando microscopy tools for quantifying and visualizing gigahertz-frequency dynamic strain. In this work, we directly image acoustic strain within N-V center-coupled diamond thin-film bulk acoustic wave resonators using stroboscopic scanning hard x-ray diffraction microscopy at the Advanced Photon Source. The far-field scattering patterns of the nanofocused x-ray diffraction encode strain information entirely through the illuminated thickness of the resonator. These patterns have a real-space spatial variation that is consistent with the bulk strain’s expected modal distribution and a momentum-space angular variation from which the strain amplitude can be quantitatively deduced. We also perform optical measurements of strain-driven Rabi precession of of the N-V center spin ensemble, providing an additional quantitative measurement of the strain amplitude. As a result, we directly measure one of the six N-V spin-stress coupling parameters, =2.73⁢(2) MHz/GPa, by correlating these measurements at the same spatial position and applied microwave power. Our results demonstrate a unique technique for directly imaging ac lattice strain in micromechanical structures and provide a direct measurement of a fundamental constant for the N-V center defect spin Hamiltonian.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました