LIGOが量子限界を超える(LIGO Surpasses the Quantum Limit)

ad

2023-10-23 カリフォルニア工科大学(Caltech)

LIGO の 300 メートルのフィルター キャビティをホストする真空管は、周波数依存の量子圧縮を実装するために使用されます。Pictured here is the vacuum tube hosting LIGO’s 300-meter filter cavity used to implement frequency-dependent quantum squeezing. Each LIGO facility, one in Hanford, Washington, and the other in Livingston, Louisiana, has its own 300-meter filter cavity. Credit: MJ Doherty

◆2015年、LIGOは初めて重力波を直接検出し、その後も多くのブラックホールの合体や中性子星の衝突からの重力波を検出してきました。しかし、LIGOの精度は量子物理学の制約によって限られていました。新しい「周波数依存のスクイージング」技術を用いることで、LIGOはこれらの制約を克服し、以前よりも多くの合体を検出できるようになりました。
◆この技術は、周波数に応じて光を異なる方法でスクイージングし、重力波の広い範囲でノイズを削減します。この進歩は、重力波の研究を推進し、未来の量子技術にも影響を与える可能性があります。

<関連情報>

周波数依存スクイーズによるLIGO検出器の広帯域量子増強 Broadband quantum enhancement of the LIGO detectors with frequency-dependent squeezing

D. Ganapathy et al.
Physical Review X  Accepted:6 September 2023

ABSTRACT

Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of () near 1 kHz, while in the Livingston detector, the noise reduction was a factor of (). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade.

ad

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました