新しいアプローチにより、回収した炭素の再利用がはるかに安価で、エネルギー集約的でなくなる可能性がある(New Approach Could Make Reusing Captured Carbon Far Cheaper, Less Energy-Intensive)

ad

2024-04-25 ジョージア工科大学

An experimental setup in the lab with a tubes, vials, and a small, reddish-orange square, electrochemical reactor prototype.
The experimental setup researchers in Marta Hatzell’s lab used to test their new electrochemical reactor for carbon capture. (Photo: Candler Hobbs)

ジョージア工科大学のエンジニアは、大気から取り除いた二酸化炭素を有用な原料に変換するプロセスを設計しました。この原料は新しいプラスチック、化学製品、燃料に利用可能です。この新しい方法は、直接空気捕獲(DAC)システムのコストとエネルギー要求を大幅に削減し、気候変動に対処するためのプロセスの経済性を向上させます。彼らの設計では、新しいタイプの触媒と電気化学反応器を組み合わせ、二酸化炭素を一酸化炭素ガスに変換します。この一酸化炭素は、熱化学プロセスを通じて様々な化学製品に転換可能です。

<関連情報>

バイポーラ膜電解による重炭酸塩からの統合的炭素回収とCO生産 Integrated carbon capture and CO production from bicarbonates through bipolar membrane electrolysis

Hakhyeon Song, Carlos A. Fernandez, Hyeonuk Choi, Po-Wei Huang, Jihun Oh  and  Marta C. Hatzell
Energy & Environmental Science  published:16 Apr 2024
DOI:https://doi.org/10.1039/D4EE00048J

Abstract

Electrochemical CO2 reduction (CO2RR) offers an environmentally friendly method to transform and harness sequestered CO2. While gas-phase electrolysis systems provide high efficiency, gas-phase electrolysis systems face challenges related to carbonate precipitate formation and crossover. In response, liquid-phase (bi)carbonates electrolysis systems based on the use of bipolar membrane (BPM) electrode assemblies have emerged. These systems not only streamline the carbon-capture and conversion process but also present economic benefits. However, liquid-phase (bi)carbonate electrolysis cells suffer limited stability and selectivity at relevant operating current. Here, utilizing a Ni-based single-atom catalyst (Ni-SAC) and bicarbonate electrolyte, we demonstrate exceptional CO Faradaic efficiency (93%) at a partial current density of -186 mA cm-2 at -3.7 V for over 18 hours with an integrated carbon capture system. Furthermore, we conducted a comparative analysis of various performance and economic metrics between bicarbonate electrolysis and CO2 gas electrolysis. Our results highlight the superior advantages of BPM-based electrolysis in terms of CO2 utilization efficiency, stability, and CO product concentration in the outlet stream. Despite its higher energy demand in BPM-based electrolysis, this approach presents a technologically promising alternative to conventional CO2 gas-phase systems. This breakthrough paves the way for the efficient direct carbon capture and conversion, offering a promising pathway towards a more sustainable and carbon-neutral future.

ad
0505化学装置及び設備
ad
ad


Follow
ad
タイトルとURLをコピーしました