シュレディンガーの猫がより良い量子ビットを作る(Schrödinger’s cat makes better qubits)

ad

2023-06-15 スイス連邦工科大学ローザンヌ校(EPFL)

◆量子コンピューティングは、現行のコンピュータでは解決できない問題を解決する可能性を持つ。量子ビット(qubit)を使用し、複数の解を同時に探索することができる。しかし、量子システムはエラーに弱い。
◆EPFLの研究者は「クリティカル・シュレディンガーの猫符号」という新しい符号化方式を提案し、エラー耐性を向上させることに成功した。この研究は量子コンピューティングの進歩であり、量子技術の真の可能性を引き出すための重要な一歩である。

<関連情報>

クリティカル・シュレーディンガー・キャット・クビット Critical Schrödinger Cat Qubit PRX Quantum  Published 7 June 2023 DOI:https://doi.org/10.1103/PRXQuantum.4.020337

Figure 1

ABSTRACT

Encoding quantum information onto bosonic systems is a promising route to quantum error correction. In a cat code, this encoding relies on the confinement of the dynamics of the system onto the two-dimensional manifold spanned by Schrödinger cats of opposite parity. In dissipative cat qubits, an engineered dissipation scheme combining two-photon drive and two-photon loss has been used to autonomously stabilize this manifold, ensuring passive protection against, e.g., bit-flip errors regardless of their origin. Similarly, in Kerr-cat qubits, where highly performing gates can be engineered, two-photon drive and Kerr nonlinearity cooperate to confine the system to a twofold-degenerate ground-state manifold spanned by cat states of opposite parity. Dissipative, Hamiltonian, and hybrid confinement mechanisms have been investigated at resonance, i.e., for driving frequencies matching that of the cavity. Here, we propose a critical cat code, where both two-photon loss and Kerr nonlinearity are present and the two-photon drive is allowed to be out of resonance. The performance of this code is assessed via the spectral theory of Liouvillians in all configurations ranging from the purely dissipative to the Kerr limit. We show that large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal performance. We further demonstrate that the competition between nonlinearity and detuning results in a first-order dissipative phase transition, leading to a squeezed vacuum steady state. We show that to achieve the maximal suppression of the logical bit-flip rate requires initializing the system in the metastable state emerging from the first-order transition and we detail a protocol to do so. Efficiently operating over a broad range of detuning values, the critical cat code is particularly resistant to random frequency shifts characterizing multiple-qubit operations, opening avenues for the realization of reliable protocols for scalable and concatenated bosonic qubit architectures.

ad

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました