メタマテリアルによる振動制御(Metamaterials can stifle vibrations with intentional complexity)

ad

2025-10-14 ミシガン大学

Web要約 の発言:
ミシガン大学の研究チームは、内部構造の複雑さを利用して振動を抑える新しいメカニカルメタマテリアルを開発した。構造内部に非線形変形や座屈挙動を意図的に組み込み、入力振動が増加しても出力振動が一定値を超えないよう設計されている。これにより、従来のダンパーや吸振材を用いずに軽量かつ受動的な振動抑制が可能となった。試作実験では、複雑な幾何構造がエネルギー伝達を分散し、過大振動を効果的に減衰させることを確認。自動車や航空宇宙、建築など、振動対策が必要な分野での応用が期待される。

メタマテリアルによる振動制御(Metamaterials can stifle vibrations with intentional complexity)
This 3-D printed “kagome tube” can passively isolate vibrations using its complex, but deliberate, structure. Image credit: James McInerney, Air Force Research Laboratory

<関連情報>

カゴメ管のトポロジカル分極と振動絶縁への応用 Topological polarization of kagome tubes and applications toward vibration isolation

James P. McInerney, Othman Oudghiri-Idrissi, Carson L. Willey, Serife Tol, Xiaoming Mao, and Abigail Juhl
Physical Review Applied Published: 14 October, 2025
DOI: https://doi.org/10.1103/xn86-676c

Abstract

Topological Maxwell lattices offer unique functionality as vibration isolators due to their capacity for asymmetrically localizing low-energy vibrational modes to their boundary via the phenomenon of topological polarization. However, existing architectures are difficult to integrate into larger systems while retaining the benefits of their topological polarization because they are not designed to function as self-supporting structures. Here, a topological Maxwell lattice, called the generalized kagome tube, is designed to address this challenge. The topological polarization of the lattice is demonstrated in a spring-and-mass model. Rigid connectors are added to the ends of the kagome tube and a finite-element method is used to determine the displacement transmissibility as a function of frequency as well as the effective stiffness of the lattice under axial and transverse loading conditions. Guidance for experimental validation and continuum-model development is provided.

0103機械力学・制御
ad
ad
Follow
ad
タイトルとURLをコピーしました