先進イメージングおよびフォトニクス分野の新たな地平を開く(Unlocking new horizons for advanced imaging and photonics)

ad

2025-06-19 シンガポール国立大学 (NUS)

先進イメージングおよびフォトニクス分野の新たな地平を開く(Unlocking new horizons for advanced imaging and photonics)Schematic illustration of the photon avalanche mechanism in lanthanide-doped nanocrystals. The process involves ground-state absorption (GSA), followed by excited-state absorption (ESA) and cross-relaxation (CR). A positive feedback loop between ESA and CR leads to an exponential buildup of excited-state population and results in highly nonlinear emission output.

シンガポール国立大学(NUS)の研究チームは、ランタン系ドーパントを導入した新しいナノ材料を開発し、光の入力変化に対し発光強度が指数関数的に増幅される“フォトン・アバランシェ”現象を世界最高レベルで示しました。特にルテチウムを固体格子内部に置換し、局所的な結晶ひずみを与えることで、光学的非線形性(nonlinearity)は500倍以上に到達。27nmナノ結晶では150倍、170nmナノディスクでは500を超えました。これにより、単一光ビームだけで33nmの超高解像画像を得られるようになり、超解像イメージングや超感度センサー、量子フォトニクスデバイス、光スイッチ、暗号記憶など、幅広い応用が期待されます。論文は『Nature』に掲載されました。

<関連情報>

副格子再構成による500を超える光学非線形性 Optical nonlinearities in excess of 500 through sublattice reconstruction

Jiaye Chen,Chang Liu,Shibo Xi,Shengdong Tan,Qian He,Liangliang Liang & Xiaogang Liu
Nature  Published:18 June 2025
DOI:https://doi.org/10.1038/s41586-025-09164-y

Abstract

The ability of materials to respond to stimuli with significant optical nonlinearity is crucial for technological advancement and innovation1,2,3. Although photon-avalanche upconversion nanomaterials with nonlinearities exceeding 60 have been developed, further enhancement remains challenging4,5,6. Here we present a method to increase photon-avalanche nonlinearity beyond 500 by reconstructing the sublattice and extending the avalanche network. We demonstrate that lutetium substitution in the host material induces significant local crystal field distortions. These distortions strengthen cross-relaxation, the key process governing population accumulation. As a result, the optical nonlinearity is significantly amplified, enabling sub-diffraction imaging through single-beam scanning microscopy, achieving lateral and axial resolutions of 33 nm (about 1/32 of λExc) and 80 nm (around 1/13 of λExc), respectively (where λExc is the excitation wavelength). Moreover, our research shows regional differentiation within photon-avalanche nanocrystals, in which photon-avalanche performance varies across different regions at the single-nanoparticle level. This effect, coupled with extreme optical nonlinearity, enables visualization of nanoemitters at resolutions beyond their physical size using simple instrumentation. These advancements open new possibilities for super-resolution imaging, ultra-sensitive sensing, on-chip optical switching and infrared quantum counting.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました