On/Offデータで世界トップ精度の分散システム電力需要予測法を開発~追加センサー不要で低コスト、電力市場への調整力提供に期待~

ad

2025-06-06 東京科学大学

東京科学大学の研究チーム(伊原・Manzhos研)は、機器のOn/Offデータを使って、分散型エネルギーシステム(DES)の電力需要を「世界最高精度」で予測する新手法「グループ・エンコード(GE)」を開発しました。各機器をカテゴリー別にグループ化し、On/Off情報を重み付き数値に変換してニューラルネットワークに入力。BEMSから得られる既存データのみで予測できるため追加センサー不要です。その結果、1分先の需要予測では平均絶対誤差(MAE)を約74%改善し、60分先予測ではMAPE3.27%という高精度を達成。変動再エネ化や需給調整市場での低コスト対応の有力ツールとなります。成果は『Applied Energy』に2025年5月5日掲載されました。

On/Offデータで世界トップ精度の分散システム電力需要予測法を開発~追加センサー不要で低コスト、電力市場への調整力提供に期待~
図1. 開発したグループエンコーディングの概要

<関連情報>

分散型エネルギーシステムにおける電力需要予測のための高次元カテゴリカルデータの新規符号化手法 A novel encoding method for high-dimensional categorical data for electricity demand forecasting in distributed energy systems

HyoJae Lee, Keisuke Kameda, Sergei Manzhos, Manabu Ihara
Applied Energy  Available online: 5 May 2025
DOI:https://doi.org/10.1016/j.apenergy.2025.125989

Highlights

  • The original encoding method, “Group encoding” using On/Off data in the building was proposed.
  • “Group encoding” can be applied using the data simply obtained in BEMS without additional sensors.
  • Electricity demand prediction using “Group encoding” achieves top level of prediction accuracy.

Abstract

There has been a gradual shift towards distributed energy systems (DES) with variable renewable energy as the main power source. However, DES present difficulties of controlling the supply-demand balance due to frequent fluctuations in electricity demand caused by human activities in a small-scale system. While energy big data can drive accurate forecasting, it is challenging in the general case due to the increasing cost of the sensor installation and decreasing density of the data in a high-dimensional feature space. To address these problems, we have studied an accurate electricity demand forecasting method without additional sensor installation cost by proposing an encoding process named “Group Encoding” (GE). The GE process was applied to existing high-dimensional binary data of On/Off state, which is already collected in building energy management systems (BEMS). GE can also solve the problem of decreasing data density in a high-dimensional feature space by reducing the dimension without loss of critical information. The effectiveness of GE was evaluated by dealing with high time-resolution data which can be used for various forecast horizons. The forecasting performance improved by 74 % in terms of MAE when using GE, compared to a typical label encoding, for a 1-min ahead forecast. The top-level of electricity forecast accuracy, 3.27 % MAPE (mean absolute percentage error) in 60-min ahead forecasting, compared to the other forecasts for single building was achieved by using only GE processed data and electricity demand.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました