レーザーを使った小型デバイスの実現に近づく、微細な色変換器(Microscopic Color Converters Move Small Laser-Based Devices Closer to Reality)

ad
ad

コロンビア大学とミラノ工科大学の研究者らは、原子レベルの薄さの材料を用いて、レーザー光の色を変えることができるデバイス作製に成功。この微細なデバイスは、従来のカラーコンバータの数分の一の大きさで、新しい種類の超小型光回路チップの実現や量子光学の進展につながる可能性がある。 Researchers at Columbia University and Politecnico di Milano have used an atomically thin material to build a device that can change the color of laser beams. Their microscopic device—a fraction of the size of conventional color converters—may yield new kinds of ultra-small optical circuit chips and advance quantum optics.

2022-08-22 コロンビア大学

atomically thin material to build a device that can change the color of laser beams

厚さ1ミクロン以下のMoS2を積み重ねて作ったデバイスが、電気通信用の波長の光の周波数を効率よく変換して、さまざまな色を作り出すことを特徴付けた。
3R-MoS2の場合は、ほとんど即座に極めて大きな増強効果を確認することができた。
これは、インターネットやテレビなどの光通信に応用できる可能性を秘めた重要な機能である。

<関連情報>

原子層状半導体におけるコンパクトな位相整合・導波路型非線形光学の実現にむけて Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors

Xinyi Xu, Chiara Trovatello, Fabian Mooshammer, Yinming Shao, Shuai Zhang, Kaiyuan Yao, Dmitri N. Basov, Giulio Cerullo, P. James Schuck
arXiv

Subjects:
Optics (physics.optics); Materials Science (cond-mat.mtrl-sci)

Cite as:
arXiv:2204.12618 [physics.optics]

(or arXiv:2204.12618v1 [physics.optics] for this version)

Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors
Nonlinear frequency conversion provides essential tools for light generation, photon entanglement, and manipulation. Tra...

Nonlinear frequency conversion provides essential tools for light generation, photon entanglement, and manipulation. Transition metal dichalcogenides (TMDs) possess huge nonlinear susceptibilities and 3R-stacked TMD crystals further combine broken inversion symmetry and aligned layering, representing ideal candidates to boost the nonlinear optical gain with minimal footprint. Here, we report on the efficient frequency conversion of 3R-MoS2, revealing the evolution of its exceptional second-order nonlinear processes along the ordinary (in-plane) and extraordinary (out-of-plane) directions. By measuring second harmonic generation (SHG) of 3R-MoS2 with various thickness – from monolayer (~0.65 nm) to bulk (~1 {\mu}m) – we present the first measurement of the in-plane SHG coherence length (~530 nm) at 1520 nm and achieve record nonlinear optical enhancement from a van der Waals material, >10^4 stronger than a monolayer. It is found that 3R-MoS2 slabs exhibit similar conversion efficiencies of lithium niobate, but within propagation lengths >100-fold shorter at telecom wavelengths. Furthermore, along the extraordinary axis, we achieve broadly tunable SHG from 3R-MoS2 in a waveguide geometry, revealing the coherence length in such structure for the first time. We characterize the full refractive index spectrum and quantify both birefringence components in anisotropic 3R-MoS2 crystals with near-field nano-imaging. Empowered with these data we assess the intrinsic limits of the conversion efficiency and nonlinear optical processes in 3R-MoS2 attainable in waveguide geometries. Our analysis highlights the potential of 3R-stacked TMDs for integrated photonics, providing critical parameters for designing highly efficient on-chip nonlinear optical devices including periodically poled structures, resonators, compact optical parametric oscillators and amplifiers, and optical quantum circuits.

ad

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました