少数データの学習でも正確な肝腫瘍抽出を学ぶ スモールデータAIを開発~高性能な医療AIを低コストで開発可能に~

ad

2025-06-17 東京科学大学

東京科学大学の鈴木賢治教授らのチームは、少数のCT画像からでも高精度に肝腫瘍領域を抽出できるAIモデル「MHP-Net」を開発。従来は数千件のアノテーションが必要だったが、MHP-Netは画像全体ではなく膨大な小型画像パッチを学習に使用し、学習症例が7~14個でも高精度なセグメンテーションを実現。従来の最先端モデルよりも優れたDICEスコアを達成し、軽量かつ高速処理が可能なため、低コストかつ中小病院でも導入可能な「スモールデータAI」として注目される。成果はIEEE Access誌に掲載。

少数データの学習でも正確な肝腫瘍抽出を学ぶ スモールデータAIを開発~高性能な医療AIを低コストで開発可能に~
図1. 限られた学習データで正確な腫瘍セグメンテーションを可能とするMHP-Netの仕組み

<関連情報>

造影肝コンピュータ断層撮影における肝腫瘍セグメンテーションのための限られた訓練データセットを用いたパッチベースの深層学習モデル Patch-Based Deep-Learning Model With Limited Training Dataset for Liver Tumor Segmentation in Contrast-Enhanced Hepatic Computed Tomography

Yuqiao Yang; Muneyuki Sato; Ze Jin; Kenji Suzuki
IEEE Access  Published:16 May 2025
DOI:https://doi.org/10.1109/ACCESS.2025.3570728

Abstract:

The automatic segmentation of liver tumors plays an important role in the diagnosis and treatment of liver cancer. While deep convolutional neural network (DCNN) models are widely used for segmentation tasks in medical imaging, they require 1,000 to 10,000 annotated cases for effective training. However, assembling datasets of this size is a significant challenge due to the labor-intensive nature of tumor annotation, which often requires the expertise of radiologists. We propose a multi-scale Hessian-enhanced patch-based neural network, which we call an MHP-Net, for liver tumor segmentation with a limited dataset. Our approach involves sampling 3D patches from the input images for training a neural network, rather than using all input images, which are commonly used in DCNN training. We applied a multi-scale Hessian ellipsoid enhancer to extract multi-scale features of the liver tumor. We implemented a region-stratified sampling strategy to prevent overfitting in patch-based neural network training. We evaluated the effectiveness of our model using a dataset from the Liver Tumor Segmentation Benchmark (LiTS). To investigate the performance of the model under limited sample-size conditions, we trained it and state-of-the-art (SOTA) deep learning models with 7, 14, and 28 tumors. Our model achieved average Dice scores of 0.691, 0.709, and 0.719 which were higher than those ranging between 0.395 and 0.641 with the SOTA models. Remarkably, our model also achieved a Dice score (0.709) on par with the top model (0.702) in the MICCAI 2017 worldwide competition, despite utilizing only 1.5% (14 out of 908 tumors) of the training data.

1602ソフトウェア工学
ad
ad
Follow
ad
タイトルとURLをコピーしました