ナノCTイメージングによるバッテリー内部劣化の可視化(A Deeper Look at Hidden Damage: Nano-CT Imaging Maps Internal Battery Degradation)

ad

2025-06-16 米国国立再生可能エネルギー研究所 (NREL)

NRELは、リチウムイオン電池の内部劣化を高精度に可視化するナノCTイメージング技術を開発。50nm分解能でセル内部の微細クラックや形態変化を非破壊で解析し、充電速度低下の主因が構造劣化であることを特定。得られた知見は、化学処理に頼らず微細構造の修復を目指す直接リサイクル技術の開発に活用され、電池の性能向上や資源循環にも貢献が期待される。

<関連情報>

寿命末期カソードにおける性能低下の主因の不均一性と直接リサイクルにおけるその結果 Heterogeneity of the Dominant Causes of Performance Loss in End-of-Life Cathodes and Their Consequences for Direct Recycling

Melissa Popeil, Francois L.E. Usseglio-Viretta, Xiaofei Pu, Paul Gasper, Nikita Dutta, Evelyna Wang, Eva Allen, John S. Mangum, Nathaniel Sunderlin, Kae Fink, Jeffery M. Allen, Peter J. Weddle …
Advanced Energy Materials  Published: 10 March 2025
DOI:https://doi.org/10.1002/aenm.202405371

ナノCTイメージングによるバッテリー内部劣化の可視化(A Deeper Look at Hidden Damage: Nano-CT Imaging Maps Internal Battery Degradation)

Abstract

Recycling Li-ion batteries from electric vehicles is critical for reducing costs and supporting the development of a domestic battery supply chain. Direct recycling of cathodes, like LiNixMnyCozO2 (NMC), is attractive due to its low cost, energy use, and emissions compared to traditional recycling techniques. However, a comprehensive understanding of the active material properties at end-of-life is needed to guide direct recycling processes and the performance-dependent reuse applications. Here, NMC material from an end-of-life commercial pouch cell is characterized and bench-marked against pristine non-cycled counterparts with respect to capacity, impedance, crystallography, morphology, and microstructure to identify major degradation modes and understand variability in the end-of-life material. The spatial heterogeneity of each property throughout the cell is also quantified. While the degraded material demonstrated similar capacity as the pristine, its impedance and rate capability are severely diminished. Furthermore, samples from the periphery of the electrode layers showed more severe performance loss compared to samples extracted from central regions. The dominant culprit of performance loss is the material microstructure, where the magnitude of particle cracking showed the strongest correlation to the impedance components that are most unfavorably impacted. This work suggests severe cracks in cathode active materials are the primary challenge that direct recycling methods must overcome.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました