光導波路多重型シリコン光行列演算回路を実証~AIに向けた超並列光コンピューティングへの道を拓く~

ad

2025-06-06 東京大学

東京大学は、未活用だった「光導波路多重」を用い、シリコンチップ上で高いスケーラビリティを持つ光行列演算回路を初めて実証。従来の波長・モード多重に加え、多ポート光検出器を活用することで、AI演算の基礎である行列-ベクトル乗算(MVM)を高速かつ省電力に実行可能としました。実験ではニューラルネット推論に93.3%の正解率を実現。光×シリコンの新計算基盤として、次世代AIアクセラレータの開発に貢献が期待されます。

光導波路多重型シリコン光行列演算回路を実証~AIに向けた超並列光コンピューティングへの道を拓く~
光導波路多重型シリコン光行列演算回路

<関連情報>

マルチポート光検出器を用いた導波路多重フォトニック行列・ベクトル乗算プロセッサ Waveguide-multiplexed photonic matrix–vector multiplication processor using multiport photodetectors

Rui Tang, Makoto Okano, Chao Zhang, Kasidit Toprasertpong, Shinichi Takagi, and Mitsuru Takenaka
Optica  Published: 4 June 2025
DOI:https://doi.org/10.1364/OPTICA.552023

Abstract

The slowing down of Moore’s law has driven the development of application-specific processors for deep learning. Analog photonic processors offer a promising solution for accelerating matrix–vector multiplications (MVMs) in deep learning by leveraging parallel computations in the optical domain. Intensity-based photonic MVM processors, which do not utilize the phase information of light, are appealing due to their simplified operations. However, existing intensity-based schemes for such processors often employ wavelength multiplexing or mode multiplexing, both of which have limited scalability due to high insertion loss or wavelength crosstalk. In this work, we present a scalable intensity-based photonic MVM processor based on the concept of waveguide multiplexing. This scheme employs multiport photodetectors (PDs) to sum the intensities of multiple optical signals, eliminating the need for multiple wavelengths or modes. A 16-port Ge PD with a 3 dB bandwidth of 11.8 GHz at a bias voltage of −3V is demonstrated, and it can be further scaled up to handle 250 ports while maintaining a 6.1 GHz operation bandwidth. A 4×4 circuit fabricated on a Si-on-insulator platform is used to perform MVMs in a three-layer neural network designed for classifying Iris flowers, achieving a classification accuracy of 93.3%. Furthermore, the performance of large-scale circuits in a convolutional neural network for Fashion-MNIST is simulated, resulting in a classification accuracy of 90.53%. This work provides a simplified and scalable approach to photonic MVM, laying a foundation for large-scale and multi-dimensional photonic matrix–matrix multiplication in optical neural networks.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました