亜硝酸塩からのラジカルに対するカチオンの効果(Cation Effects on Radicals from Nitrite)

ad

2024-04-03 パシフィック・ノースウェスト国立研究所(PNNL)

高濃度かつアルカリ性のニトライト溶液が紫外線に曝されると、様々な種類のラジカルが生成されることがわかった。研究者は、異なる金属カチオンを使用して、ニトライト由来のラジカルの生成に及ぼす影響を調査した。その結果、カチオンの性質がラジカルの生成に大きな影響を与えることが判明した。小さなカチオンは水と密接に結合し、ラジカルの生成を阻害する一方、大きなカチオンは水との結合が緩やかで、ラジカルの生成を促進する。これらの結果は、ニトライト溶液のラジカル生成における重要な溶液効果を考慮する必要性を提案している。

<関連情報>

カチオンが濃厚多成分水溶液中のラジカル反応ダイナミクスに影響 Cations impact radical reaction dynamics in concentrated multicomponent aqueous solutions

Emily T. Nienhuis;Trent R. Graham;Nicolas L. D’Annunzio;Malgorzata I. Kowalska;Jay A. LaVerne;Thomas M. Orlando;Jacob G. Reynolds;Donald M. Camaioni;Kevin M. Rosso;Carolyn I. Pearce;Eric D. Walter
The Journal of Chemical Physics  Published:June 12 2023
DOI:https://doi.org/10.1063/5.0153132

The products and subsequent reaction from the photolysis of nitrite. Reprinted with permission from J. Mack and J. R. Bolton, “Photochemistry of nitrite and nitrate in aqueous solution: A review,” J. Photochem. Photobiol., A 128(1–3), 1–13 (1999). Copyright 1999 Elsevier.

Abstract

Ultraviolet (UV) photolysis of nitrite ions (NO2) in aqueous solutions produces a suite of radicals, viz., NO·, O, ·OH, and ·NO2. The O and NO· radicals are initially formed from the dissociation of photoexcited NO2. The O radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O oxidize the NO2 to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2 solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2 toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

ad

0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました