NREL、プラスチックリサイクル手法の性能を比較するための体系的なフレームワークを開発(News Release: NREL Develops Systematic Framework To Compare Performance of Plastics Recycling Approaches)


2023-01-17 米国国立再生可能エネルギー研究所(NREL)

ACS Sustainable Chemistry & Engineering 誌に掲載された「Technical, economic, and environmental comparison of closed-loop recycling technologies for common plastics」の主執筆者である Taylor Uekert 氏は、「リサイクルに投資しようとする企業にとって、コストが主要因の1つ(主要因でないにしても)であることは分かっています」と述べています。「しかし、この地球上の私たちの生活にとって同様に重要なものが他にもあることを忘れてはならないと思います。


一般的なプラスチックのクローズドループリサイクル技術の技術、経済、および環境比較 Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics

Taylor Uekert, Avantika Singh, Jason S. DesVeaux, Tapajyoti Ghosh, Arpit Bhatt, Geetanjali Yadav, Shaik Afzal, Julien Walzberg, Katrina M. Knauer, Scott R. Nicholson, Gregg T. Beckham, and Alberta C. Carpenter
ACS Sustainable Chemistry & Engineering  Published:January 12, 2023


Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.