材料に関する洞察に満ちたジム・デ・ヨレオのキャリアは、エネルギー科学センターで継続されます Jim De Yoreo’s career full of insights about materials will continue at the Energy Sciences Center
2022-06-13 アメリカ・パシフィック・ノースウェスト国立研究所(PNNL)
研究チームは、有機成分と無機成分のどちらから集合を開始しても、異なる結果が得られるかどうかを調べた。
その結果、操作の順番が重要であることがわかった。有機基が最初に組み立てられると、全体の構造を支配する。一方、ナノ結晶から始めると、その結果はあまり明確ではなくなった。ナノ結晶のサイズと組成も重要であることがわかった。ナノ結晶が小さいと、有機構造とナノ結晶の両方が最終的な材料に影響を及ぼします。ナノ結晶が大きいと、最終的な構造は主にナノ結晶が決定する。
この研究は、ACS Nano誌に最近掲載されたもので、生物学的な着想を得た分子の開発、無機材料の合成、高度な画像処理技術などの専門知識が必要でした。また、このような複雑な物質集合体を作り、理解するために、さまざまな視点を結集させる必要がありました。
<関連情報>
- https://www.pnnl.gov/news-media/exploring-new-materials-through-collaboration
- https://pubs.acs.org/doi/10.1021/acsnano.2c01203
ペプトイドの自己組織化に及ぼすナノ粒子サイズおよび表面化学の影響 Impact of Nanoparticle Size and Surface Chemistry on Peptoid Self-Assembly
Madison Monahan, Micaela Homer, Shuai Zhang, Renyu Zheng, Chun-Long Chen, James De Yoreo, and Brandi M. Cossairt Published:April 29, 2022
DOI:https://doi.org/10.1021/acsnano.2c01203
Abstract
Self-assembled organic nanomaterials can be generated by bottom-up assembly pathways where the structure is controlled by the organic sequence and altered using pH, temperature, and solvation. In contrast, self-assembled structures based on inorganic nanoparticles typically rely on physical packing and drying effects to achieve uniform superlattices. By combining these two chemistries to access inorganic–organic nanostructures, we aim to understand the key factors that govern the assembly pathway and structural outcomes in hybrid systems. In this work, we outline two assembly regimes between quantum dots (QDs) and reversibly binding peptoids. These regimes can be accessed by changing the solubility and size of the hybrid (peptoid-QD) monomer unit. The hybrid monomers are prepared via ligand exchange and assembled, and the resulting assemblies are studied using ex-situ transmission electron microscopy as a function of assembly time. In aqueous conditions, QDs were found to stabilize certain morphologies of peptoid intermediates and generate a final product consisting of multilayers of small peptoid sheets linked by QDs. The QDs were also seen to facilitate or inhibit assembly in organic solvents based on the relative hydrophobicity of the surface ligands, which ultimately dictated the solubility of the hybrid monomer unit. Increasing the size of the QDs led to large hybrid sheets with regions of highly ordered square-packed QDs. A second, smaller QD species can also be integrated to create binary hybrid lattices. These results create a set of design principles for controlling the structure and structural evolution of hybrid peptoid-QD assemblies and contribute to the predictive synthesis of complex hybrid matter.
ACS Nano