2022-04-27 ジョージア工科大学
プリンストン大学とジョージア工科大学の研究者が作成したこの多孔質構造は、スピノーダル微細構造(特殊設計された穴のネットワーク)を特徴とし、マクロスケールで最適な挙動を実現するために調整することができます。研究チームは、このスピノーダル微細構造をさまざまに組み合わせて、再建手術用の顔面インプラントや航空機用の高剛性軽量部品の設計と試作を行いました(3月16日発行の『Advanced Materials』誌)。
<関連情報>
- https://research.gatech.edu/nature-inspired-strong-lightweight-material-planes-buildings-and-bone-implants
- https://onlinelibrary.wiley.com/doi/10.1002/adma.202109304
マルチスケール設計・製造のための最適化されたスピノーダルアーキテクト材料 Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing
Fernando V. Senhora,Emily D. Sanders,Glaucio H. Paulino
Advanced Materials Published: 16 March 2022
DOI:https://doi.org/10.1002/adma.202109304
Abstract
Spinodal architected materials with tunable anisotropy unify optimal design and manufacturing of multiscale structures. By locally varying the spinodal class, orientation, and porosity during topology optimization, a large portion of the anisotropic material space is exploited such that material is efficiently placed along principal stress trajectories at the microscale. Additionally, the bicontinuous, nonperiodic, unstructured, and stochastic nature of spinodal architected materials promotes mechanical and biological functions not explicitly considered during optimization (e.g., insensitivity to imperfections, fluid transport conduits). Furthermore, in contrast to laminated composites or periodic, structured architected materials (e.g., lattices), the functional representation of spinodal architected materials leads to multiscale, optimized designs with clear physical interpretation that can be manufactured directly, without special treatment at spinodal transitions. Physical models of the optimized, spinodal-embedded parts are manufactured using a scalable, voxel-based strategy to communicate with a masked stereolithography (m-SLA) 3D printer.