2022-04-06 アルゴンヌ国立研究所
科学者たちは、量子デバイスの重要な特徴を計算するための数学的な近道を発見した。
12,000種類の元素と化合物の量子特性を計算し、量子情報を維持できる時間の長さ(「コヒーレンス時間」)を近似する新しい方程式を発表した。
<関連情報>
- https://www.anl.gov/article/a-mathematical-shortcut-for-determining-quantum-information-lifetimes
- https://www.pnas.org/doi/10.1073/pnas.2121808119
2,000を超えるホスト材料におけるスピン量子ビットのコヒーレンスの一般化スケーリング Generalized scaling of spin qubit coherence in over 12,000 host materials
Shun Kanai, F. Joseph Heremans, Hosung Seo, Gary Wolfowicz , Christopher P. Anderson, Sean E. Sullivan, Mykyta Onizhuk, Giulia Galli, David D. Awschalom awsch, and Hideo Ohno
Proceedings of the National Academy of Sciences Published:April 6, 2022
https://doi.org/10.1073/pnas.2121808119
Abstract
Spin defect centers with long quantum coherence times (T2) are key solid-state platforms for a variety of quantum applications. Cluster correlation expansion (CCE) techniques have emerged as a powerful tool to simulate the T2 of defect electron spins in these solid-state systems with good accuracy. Here, based on CCE, we uncover an algebraic expression for T2 generalized for host compounds with dilute nuclear spin baths under a magnetic field that enables a quantitative and comprehensive materials exploration with a near instantaneous estimate of the coherence time. We investigated more than 12,000 host compounds at natural isotopic abundance and found that silicon carbide (SiC), a prominent widegap semiconductor for quantum applications, possesses the longest coherence times among widegap nonchalcogenides. In addition, more than 700 chalcogenides are shown to possess a longer T2 than SiC. We suggest potential host compounds with promisingly long T2 up to 47 ms and pave the way to explore unprecedented functional materials for quantum applications.