熱メタマテリアル設計にAI導入、従来の限界を突破(AI for thermal metamaterials Break Through Traditional Design Limits)

ad

2025-07-03 上海交通大学 (SJTU)

熱メタマテリアル設計にAI導入、従来の限界を突破(AI for thermal metamaterials Break Through Traditional Design Limits)
Figure 2. Paradigm and key characteristics of AI-driven inverse design for thermal metamaterials

上海交通大学の研究チームは、AIを活用して熱放射メタマテリアルの逆設計を実現し、『Nature』に成果を発表した。従来の設計手法では構造選定に膨大な時間と労力を要していたが、AIモデルにより性能要件に応じた構造を高速に生成・最適化できるようになった。自然界の3D構造を基にした「三平面モデリング」手法を用い、多様な材料系に対応する設計データベースを構築。実験では7種のメタマテリアルが実証され、特に建物や衣類で優れた冷却性能を示した。安価で量産可能な素材も含まれ、都市の冷却やエネルギー削減に貢献が期待される。

<関連情報>

機械学習による超広帯域・帯域選択性熱メタエミッタ Ultrabroadband and band-selective thermal meta-emitters by machine learning

Chengyu Xiao,Mengqi Liu,Kan Yao,Yifan Zhang,Mengqi Zhang,Max Yan,Ya Sun,Xianghui Liu,Xuanyu Cui,Tongxiang Fan,Changying Zhao,Wansu Hua,Yinqiao Ying,Yuebing Zheng,Di Zhang,Cheng-Wei Qiu & Han Zhou
Nature  Published:02 July 2025
DOI:https://doi.org/10.1038/s41586-025-09102-y

Abstract

Thermal nanophotonics enables fundamental breakthroughs across technological applications from energy technology to information processing1,2,3,4,5,6,7,8,9,10,11. From thermal emitters to thermophotovoltaics and thermal camouflage, precise spectral engineering has been bottlenecked by trial-and-error approaches. Concurrently, machine learning has demonstrated its powerful capabilities in the design of nanophotonic and meta-materials12,13,14,15,16,17,18. However, it remains a considerable challenge to develop a general design methodology for tailoring high-performance nanophotonic emitters with ultrabroadband control and precise band selectivity, as they are constrained by predefined geometries and materials, local optimization traps and traditional algorithms. Here we propose an unconventional machine learning-based paradigm that can design a multitude of ultrabroadband and band-selective thermal meta-emitters by realizing multiparameter optimization with sparse data that encompasses three-dimensional structural complexity and material diversity. Our framework enables dual design capabilities: (1) it automates the inverse design of a vast number of possible metastructure and material combinations for spectral tailoring; (2) it has an unprecedented ability to design various three-dimensional meta-emitters by applying a three-plane modelling method that transcends the limitations of traditional, flat, two-dimensional structures. We present seven proof-of-concept meta-emitters that exhibit superior optical and radiative cooling performance surpassing current state-of-the-art designs. We provide a generalizable framework for fabricating three-dimensional nanophotonic materials, which facilitates global optimization through expanded geometric freedom and dimensionality and a comprehensive materials database.

0105熱工学
ad
ad
Follow
ad
タイトルとURLをコピーしました