ナノフォトニクス:光と物質のより効率的な結合法を開発(Nanophotonics: a more efficient way of coupling light and matter)

ad

2025-05-26 ミュンヘン大学(LMU)

ミュンヘン大学のティットル教授らは、原子層材料とメタサーフェス技術を融合した「ファンデルワールス異種構造メタサーフェス(vdW-HMs)」を開発。タングステンジスルフィド単層を窒化ホウ素で挟み、周期構造を形成することで、光と電子の結合体であるエキシトン・ポラリトンを生成し、光の制御を実現。従来より薄型で高性能な光学部品の開発が可能となり、光センサーや高速光通信などへの応用が期待される。成果は『Nature Photonics』に掲載。

<関連情報>

原子層によるファンデルワールスヘテロ構造メタサーフェスの超薄型光学キャビティ構築 Atomic-layer assembly of ultrathin optical cavities in van der Waals heterostructure metasurfaces

Luca Sortino,Jonas Biechteler,Lucas Lafeta,Lucca Kühner,Achim Hartschuh,Leonardo de S. Menezes,Stefan A. Maier & Andreas Tittl
Nature Photonics  Published:26 May 2025
DOI:https://doi.org/10.1038/s41566-025-01675-4

ナノフォトニクス:光と物質のより効率的な結合法を開発(Nanophotonics: a more efficient way of coupling light and matter)

Abstract

Photonics has been revolutionized by advances in optical metasurfaces, unlocking design and engineering opportunities for flat optical components. Similarly, layered two-dimensional materials have enabled breakthroughs in physics via the deterministic assembly of vertical heterostructures, allowing precise control over the atomic composition of each layer. However, integrating these fields into a single system has remained challenging, limiting progress in atomic-scale optical cavities and metamaterials. Here we demonstrate the concept of van der Waals heterostructure metasurfaces, where ultrathin multilayer van der Waals material stacks are shaped into precisely engineered resonant nanostructures for enhancing light–matter interactions. By leveraging quasi-bound states in the continuum physics, we create intrinsic high-quality-factor resonances originating from WS2 monolayers encapsulated in hexagonal boron nitride at thicknesses below 130 nm, achieving room-temperature strong coupling and polaritonic photoluminescence emission. Furthermore, the metasurface-coupled exciton–polaritons exhibit strong nonlinearities, leading to a saturation of the strong-coupling regime at ultralow fluences of <1 nJ cm–2, three orders of magnitude lower than in previous two-dimensional-material-based cavity systems. Our approach monolithically integrates metasurfaces and van der Waals materials and can be extended to the vast library of existing two-dimensional materials, unlocking new avenues for ambient operation of ultrathin polaritonic devices with atomic-scale precision and control.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました