低温ナノ粒子インク:太陽エネルギーの新しい章を印刷する(Low temperature nanoparticle ink: Printing a new chapter in solar energy)

ad

2022-07-05 オーストラリア連邦研究会議(ARC)

ペロブスカイト型太陽電池は、すでに従来のシリコン型太陽電池に匹敵する効率を持ち、さらに柔軟性があり、製造に必要なエネルギーも少なくて済む。

しかし、長期耐久性の問題や、製造工程におけるいくつかのハードルが、この刺激的な材料がシリコンを追い越すのを阻んできた。

しかし今回、オーストラリアの国立科学機関CSIROと共同で、ARC Exciton Science Centre of Excellenceの研究者が、酸化スズナノ粒子インクを用いて、これらの課題に対する答えを見つけた可能性がある。

<関連情報>

非水系ワンポットSnO2ナノ粒子インクとそのプリンタブルペロブスカイト太陽電池への応用

Non-Aqueous One-Pot SnO2 Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells

T. A. Nirmal Peiris, Hasitha C. Weerasinghe, Manoj Sharma, Jueng-Eun Kim, Monika Michalska, Naresh Chandrasekaran, Dimuthu C. Senevirathna, Hanchen Li, Anthony S. R. Chesman, Doojin Vak, and Jacek J. Jasieniak

Chemistry of Materials Published:June 16, 2022

DOI:https://doi.org/10.1021/acs.chemmater.2c00578

Abstract Image

Abstract

Metal halide perovskite materials are promising candidates for printable solar cells due to their feasibility for achieving high device efficiency at a low processing temperature. One of the key challenges in printed perovskite solar cell (PSC) research is to develop low-temperature-processable charge-transporting layers for both electron and hole-transporting materials, which can be used within large-scale roll-to-roll (R2R) printing techniques. Colloidal links allow for facile deposition, provided that the size of the nanoparticles (NPs) is controlled to less than a few tens of nanometres (ideally < 20 nm); they can be deposited as uniform films and can be processed at low temperatures (typically < 140 °C). Here, we report a facile and scalable route for the synthesis of SnO2 NP dispersions using a microwave-assisted “benzyl alcohol” approach that is compatible with all of these R2R printing requirements. The method enables crystalline SnO2 NPs to be synthesized with a controlled average particle size (∼6.5 nm) and be used directly as an ink without any post-synthesis purification (i.e., one-pot synthesis). The use of these SnO2 NPs has been explored as an electron transport layer (ETL) within planar PSCs using spin-coating and thermal processing at 140 °C for 2 min, yielding devices with over 18% photo-conversion efficiency. Comparable devices were also fabricated using slot die-coated SnO2 on glass substrates and R2R-coated SnO2 on plastic substrates, yielding efficiencies of 15.3 and 10.4%, respectively. Our results demonstrate the suitability of the developed SnO2 ink to be used for the deposition of ETLs in optoelectronic devices by industrial-scale R2R printing processes.

ad

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました