NRELの科学者が再生可能な水素製造方法を進歩させる(NREL Scientists Advance Renewable Hydrogen Production Method)

ad

2022-05-05 米国国立再生可能エネルギー研究所(NREL)

NRELの科学者たちは、水素製造経路に焦点を当て、太陽熱化学水素(STCH)製造と呼ばれる新しい水分解技術について分析しました。この技術は、一般的に使用されている電気分解法による水素製造よりもエネルギー効率が高くなる可能性があります。電気分解法では、水を水素と酸素に分解するために電気を必要とします。STCHは、金属酸化物を摂氏1,400度以上の高温にさらした後、低温の水蒸気で再酸化して水素を製造する2段階の化学プロセスに依存している。
この研究は、水素製造経路に焦点を当てた技術経済分析のポートフォリオの一部を示している。太陽電池は、太陽スペクトルの一部分しか捕らえられません。STCHは全波長域を利用する。集光型太陽熱発電により、SCHは化学反応を起こすことができる。

<関連情報>

太陽熱化学水素製造のシステムおよび技術経済分析 System and technoeconomic analysis of solar thermochemical hydrogen production

Zhiwen Ma,Patrick Davenport,Genevieve Saur
Renewable Energy  Published:23 March 2022
DOI:https://doi.org/10.1016/j.renene.2022.03.108

NRELの科学者が再生可能な水素製造方法を進歩させる(NREL Scientists Advance Renewable Hydrogen Production Method)

Abstract

Hydrogen is a promising energy carrier that can be obtained from various feedstocks using renewable energy sources. Direct solar thermochemical hydrogen (STCH) production by water splitting can utilize the full spectrum of solar radiation and has the potential to achieve high solar energy conversion efficiencies. Currently STCH research areas focus on material discovery. This paper evaluates the performance of various STCH materials in the context of a system platform to assess techno-economic benefits and gaps in the path to STCH scale-up. To analyze the hydrogen production cost, a concentrating solar thermal (CST) system is introduced as a platform for integrating STCH materials and accommodating generalized thermochemical processes. The thermochemical process is based on a two-step STCH cycle using metal oxide that consists of a high temperature step for metal oxide reduction, followed by an oxidation step for water splitting at a lower temperature. A preferred configuration is to have the high temperature step occurring in a directly irradiated solar receiver reactor. To this end, we conceptualized a receiver design and associated solar field layout and investigated STCH operational boundaries, component costs and sensitivity parameters on the $2/kgH2 goal of hydrogen production. The study explored system-related variables and factors associated with scaling up. The CST platform allows more comprehensive studies that encompass aspects of STCH materials and systems such as cost, hydrogen productivity and replacement frequency, alongside other system components like heliostat field, tower, and potential receiver costs.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました