「AI聖徳太子」が複数情報を聞き分け、開発方針を指示~多様な要求物性の環境低負荷型プラスチック材開発に貢献~

ad

2025-06-23 理化学研究所

「AI聖徳太子」が複数情報を聞き分け、開発方針を指示~多様な要求物性の環境低負荷型プラスチック材開発に貢献~

理化学研究所は、環境低負荷型プラスチックの迅速な開発を支援するAI活用手法を開発しました。TD-NMRで取得した複数の物性情報を、CNNで解析・特徴抽出し、ベイズ最適化により最適成形条件を探索。従来30日以上かかっていた試験を簡便かつ高速に行え、材料開発の効率化とコスト削減が期待されます。このAIは「AI聖徳太子」と称され、複雑なデータから開発方針を導き、持続可能な開発やネイチャーポジティブへの貢献が期待されます。

<関連情報>

低磁場NMRデータからの機械学習による特徴を用いた生分解性ポリマーのベイズ最適化 Bayesian optimization of biodegradable polymers via machine learning driven features from low-field NMR data

Ryo Fujita,Yoshifumi Amamoto & Jun Kikuchi
npj Materials Degradation Published:18 June 2025
DOI:https://doi.org/10.1038/s41529-025-00613-7

Abstract

Effective designs of biodegradable polymers are highly desirable for achieving a sustainable society by decreasing environmental burden and replacing petroleum-based resources with biomass. Low-field NMR is one of the candidate techniques because it provides information on the higher-order structure and dynamics of polymers quickly and conveniently. Although machine learning approaches such as Bayesian optimization (BO) and convolutional neural networks (CNNs) are significant, there have been almost no reports on effective material design based on low-field nuclear magnetic resonance (NMR) data. This study proposes a method for optimizing polymer process conditions using CNN-based features extracted from relaxation curves. This approach identified important features related to material properties while reconstructing denoised relaxation curves of polylactic acid. BO of process conditions using these features achieved an optimization rate comparable to using material property values, suggesting that effective material design is possible without directly evaluating a large number of properties. This might be potentially insightful for the feasibility of a framework to accelerate polymer development through low-field NMR with minimal property data.

1602ソフトウェア工学
ad
ad
Follow
ad
タイトルとURLをコピーしました