寒冷地でもEVを5倍速く充電可能な電池製造法を開発(Charging electric vehicles 5x faster in subfreezing temps)

ad

2025-04-01 ミシガン大学​

ミシガン大学のエンジニアチームは、電気自動車(EV)用リチウムイオン電池の新しい製造プロセスを開発し、氷点下でも従来の5倍速い充電を可能にしました。この手法では、電極に約20ナノメートル厚のリチウムボレートカーボネート製のガラス状コーティングを施し、さらに40ミクロンサイズの微小チャネルを形成しています。これにより、低温下でのリチウムメッキの形成を防ぎ、-10℃でも10分以内の急速充電が実現可能となりました。この技術は、寒冷地でのEVの航続距離と充電速度の向上に寄与し、EV普及の障壁を低減することが期待されます。

<関連情報>

インターフェイスエンジニアリングと3Dアーキテクチャーにより、氷点下でリチウムイオン電池の6℃急速充電が可能になる Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures

Tae H. Cho∙ Yuxin Chen∙ Daniel W. Liao∙ … ∙ Daniel Penley∙ Manoj K. Jangid∙ Neil P. Dasgupta
Joule  Published:March 17, 2025
DOI:https://doi.org/10.1016/j.joule.2025.101881

Graphical abstract

寒冷地でもEVを5倍速く充電可能な電池製造法を開発(Charging electric vehicles 5x faster in subfreezing temps)

Context & scale

Current Li-ion batteries suffer from limited performance under (1) fast-charge, (2) low-temperature, and (3) thick-electrode conditions, where multiple mass transport and interfacial kinetic effects need to be simultaneously addressed. As a consequence, design trade-offs limit the use of batteries in applications that are challenging to electrify, especially in extreme environments and in configurations where thermal management is not feasible. Here, we introduce a strategy that allows for extreme fast charging (up to 6C) at low temperatures (down to −10°C), while maintaining technologically relevant electrode loadings > 3 mAh/cm2. A synergistic strategy is employed using surface coatings and 3D-architected graphite anodes, which can address both transport and interfacial limitations under these extreme conditions without harmful lithium plating. This study provides fundamental insights into the dominant mechanisms that control Li plating and capacity fade under low-temperature and fast-charge conditions.

Highlights

  • 6C fast charging of Li-ion batteries is demonstrated at −10°C without Li plating
  • 3D electrodes and artificial SEI coatings improve transport and interface kinetics
  • 3-electrode measurements decouple interface/transport effects at low temperatures
  • Fast charging at low temperatures can enhance electric vehicles in cold climates

Summary

Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li3BO3-Li2CO3). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (>3 mAh/cm2). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/LixNiyMnzCoaO (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a >500% increase in accessible capacity and >97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました