海洋探査のためのバイオニック・クラゲを作る(Building Bionic Jellyfish for Ocean Exploration)

ad

2024-02-28 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学の研究者たちが、生物ハイブリッドロボットクラゲを作成し、これを利用して海洋探査を目指す研究を発表しました。
◆この研究では、クラゲに電子機器を追加して水泳能力を向上させ、小型のペイロードを運ぶ能力を与えました。これにより、海洋の深層を探査し、温度や塩分、酸素レベルなどのデータを収集することが可能になります。この技術は、従来の調査船よりも費用が低く、海洋の奥深くに到達できると期待されています。今後の研究では、これらのバイオニッククラゲの能力をさらに向上させ、水平方向にも操作可能にすることが検討されています。

<関連情報>

海洋探査のための生きたクラゲの電気機械的強化 Electromechanical enhancement of live jellyfish for ocean exploration

Simon R Anuszczyk and John O Dabiri
Bioinspiration & Biomimetics  Published: 28 February 2024
DOI:10.1088/1748-3190/ad277f

Figure 1.

Abstract

The vast majority of the ocean’s volume remains unexplored, in part because of limitations on the vertical range and measurement duration of existing robotic platforms. In light of the accelerating rate of climate change impacts on the physics and biogeochemistry of the ocean, the need for new tools that can measure more of the ocean on faster timescales is becoming pressing. Robotic platforms inspired or enabled by aquatic organisms have the potential to augment conventional technologies for ocean exploration. Recent work demonstrated the feasibility of directly stimulating the muscle tissue of live jellyfish via implanted microelectronics. We present a biohybrid robotic jellyfish that leverages this external electrical swimming control, while also using a 3D printed passive mechanical attachment to streamline the jellyfish shape, increase swimming performance, and significantly enhance payload capacity. A six-meter-tall, 13 600 l saltwater facility was constructed to enable testing of the vertical swimming capabilities of the biohybrid robotic jellyfish over distances exceeding 35 body diameters. We found that the combination of external swimming control and the addition of the mechanical forebody resulted in an increase in swimming speeds to 4.5 times natural jellyfish locomotion. Moreover, the biohybrid jellyfish were capable of carrying a payload volume up to 105% of the jellyfish body volume. The added payload decreased the intracycle acceleration of the biohybrid robots relative to natural jellyfish, which could also facilitate more precise measurements by onboard sensors that depend on consistent platform motion. While many robotic exploration tools are limited by cost, energy expenditure, and varying oceanic environmental conditions, this platform is inexpensive, highly efficient, and benefits from the widespread natural habitats of jellyfish. The demonstrated performance of these biohybrid robots suggests an opportunity to expand the set of robotic tools for comprehensive monitoring of the changing ocean.

ad

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました