網膜のように画像を符号化する機械学習フレームワーク(A machine learning framework that encodes images like a retina)

ad

2024-02-06 スイス連邦工科大学ローザンヌ校(EPFL)

神経プロテーゼの開発における大きな課題は、環境から得られた情報を神経信号に変換する感覚符号化だ。デミトリ・サルティスとクリストフ・モーザーは、レチナプロテーゼを介して伝送される画像を圧縮するために機械学習を利用し、特に画像コントラストの最適な調整を行う「アクターモデルフレームワーク」を開発した。このアプローチは、生物学的レチナの神経反応により類似した画像を生成することが示された。

<関連情報>

視覚感覚エンコーディングのためのアクターモデルフレームワーク An actor-model framework for visual sensory encoding

Franklin Leong,Babak Rahmani,Demetri Psaltis,Christophe Moser & Diego Ghezzi
Nature Communications  Published:27 January 2024
DOI:https://doi.org/10.1038/s41467-024-45105-5

網膜のように画像を符号化する機械学習フレームワーク(A machine learning framework that encodes images like a retina)

Abstract

A fundamental challenge in neuroengineering is determining a proper artificial input to a sensory system that yields the desired perception. In neuroprosthetics, this process is known as artificial sensory encoding, and it holds a crucial role in prosthetic devices restoring sensory perception in individuals with disabilities. For example, in visual prostheses, one key aspect of artificial image encoding is to downsample images captured by a camera to a size matching the number of inputs and resolution of the prosthesis. Here, we show that downsampling an image using the inherent computation of the retinal network yields better performance compared to learning-free downsampling methods. We have validated a learning-based approach (actor-model framework) that exploits the signal transformation from photoreceptors to retinal ganglion cells measured in explanted mouse retinas. The actor-model framework generates downsampled images eliciting a neuronal response in-silico and ex-vivo with higher neuronal reliability than the one produced by a learning-free approach. During the learning process, the actor network learns to optimize contrast and the kernel’s weights. This methodological approach might guide future artificial image encoding strategies for visual prostheses. Ultimately, this framework could be applicable for encoding strategies in other sensory prostheses such as cochlear or limb.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました