伸縮自在のエレクトロニクスを強化:フレキシブルで自己修復可能なウェアラブルのための新しい流動金属回路を開発(Enhancing stretchable electronics: NUS researchers develop novel liquid metal circuits for flexible, self-healing wearables)

ad

2023-10-02 シンガポール国立大学(NUS)

2023 1002 iHT BiLiSC Photo 2
Liquid metal circuitry using a newly engineered material called Bilayer Liquid-Solid Conductor (BiLiSC) allows devices such as wearables to withstand large deformation and even self-heal to ensure electronic and functional integrity.

◆シンガポール国立大学の研究者は、新しい素材「BiLiSC」を開発しました。BiLiSCは、可撓性が高く、自己修復能力があり、導電性が優れており、ウェアラブルテクノロジー、ソフトロボティクス、スマートデバイスなどの性能を大幅に向上させる可能性があります。
◆この素材は流動金属と微粒子から構成され、伸縮性があり、破損後に自己修復できます。また、医療用ウェアラブルなど多くの用途に適しています。研究チームは、BiLiSCの高効率な製造方法を見つけ、さらなる改良を目指しています。

<関連情報>

高伸縮性二層流動金属ベース導体を用いた超高歪み不感性集積ハイブリッドエレクトロニクスを開発 Ultrahigh Strain-Insensitive Integrated Hybrid Electronics Using Highly Stretchable Bilayer Liquid Metal Based Conductor

Shuwen Chen, Shicheng Fan, Jiaming Qi, Ze Xiong, Zheng Qiao, Zixiong Wu, Joo Chuan Yeo, Chwee Teck Lim
Advanced Materials  Published: 10 November 2022
DOI:https://doi.org/10.1002/adma.202208569

Abstract

Human-interfaced electronic systems require strain-resilient circuits. However, present integrated stretchable electronics easily suffer from electrical deterioration and face challenges in forming robust multilayered soft-rigid hybrid configurations. Here, a bilayer liquid-solid conductor (b-LSC) with amphiphilic properties is introduced to reliably interface with both rigid electronics and elastomeric substrates. The top liquid metal can self-solder its interface with rigid electronics at a resistance 30% lower than the traditional tin-soldered rigid interface. The bottom polar composite comprising liquid metal particles and polymers can not only reliably interface with elastomers but also help the b-LSC heal after breakage. The b-LSC can be scalably fabricated by printing and subsequent peeling strategies, showing ultra-high strain-insensitive conductivity (maximum 22 532 S cm−1), extreme stretchability (2260%), and negligible resistance change under ultra-high strain (0.34 times increase under 1000% strain). It can act as stretchable vertical interconnect access for connecting multilayered layouts and can be scalably and universally fabricated on various substrates with a resolution of ≈200 µm. It is demonstrated that it can construct stretchable sensor arrays, multi-layered stretchable displays, highly integrated haptic user-interactive optoelectric E-skins, visualized heaters, robot touch sensing systems, and wireless powering for wearable electronics.

ad


0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました