バイオインスパイアード:皮膚の機能を模倣する技術開発(Bio-inspired: developing technology to mimic the function of skin)

ad

2023-04-26 ニューサウスウェールズ大学(UNSW)

バイオインスパイアード:皮膚の機能を模倣する技術開発(Bio-inspired: developing technology to mimic the function of skin)

Until now, most existing artificial sensors haven’t had the capability to process mechanical signals. Mr Fandi Chen, a PhD student from the School of Materials Science and Engineering holds up the sensing material. Photo: Supplied.

オーストラリアのニューサウスウェールズ大学の研究者たちは、人間の皮膚の性質を模倣するために、人工シナプスと高度なセンサーを組み合わせた電子デバイスを開発しました。

これにより、超低消費電力でジェスチャーや手書き文字の認識を含む情報処理に必要な機械的な刺激を検出することができます。

この技術は、高齢者介護やスポーツモニタリング、モーションキャプチャーなどの分野で応用される可能性があります。加えて、E-skinは、血圧、温度、酸素レベルなどのバイタルをリアルタイムにモニタリングするためのセンシング技術としても利用できます。

<関連情報>

ニューロモーフィックコンピューティングとジェスチャー認識のためのバイオインスパイアード人工知覚デバイス Bio-Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition

Fandi Chen, Shuo Zhang, Long Hu, Jiajun Fan, Chun-Ho Lin, Peiyuan Guan, Yingze Zhou, Tao Wan, Shuhua Peng, Chun-Hui Wang, Liao Wu, Teri McLean Furlong, Nagarajan Valanoor, Dewei Chu

Advanced Functional Materials  Published: 17 March 2023

DOI:https://doi.org/10.1002/adfm.202300266

Abstract

Artificial perception technologies capable of sensing and feeling mechanical stimuli like human skins are critical enablers for electronic skins (E-Skins) needed to achieve artificial intelligence. However, most of the reported electronic skin systems lack the capability to process and interpret the sensor data. Herein, a new design of artificial perceptual system integrating ZnO-based synaptic devices with Pt/carbon nanofibers-based strain sensors for stimuli detection and information processing is presented. Benefiting from the controllable ion migration after indium doping, the device can emulate various essential functions, such as short-term/long-term plasticity, paired-pulse facilitation, excitatory post-synaptic current, and synaptic plasticity depending on the number, frequency, amplitude, and width of the applied pulses. The Pt/carbon nanofibers-based strain sensors can detect subtle human motion and convert mechanical stimuli into electrical signals, which are further processed by the ZnO devices. By attaching the integrated devices to finger joints, it is demonstrated that they can recognize handwriting and gestures with a high accuracy. This work offers new insights in designing artificial synapses and sensors to process and recognize information for neuromorphic computing and artificial intelligence applications.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました