3Dプリントによる新しい合金クラスが、超高強度金属部品にさらなる柔軟性をもたらす(New class of 3D-printed alloys brings more flexibility to super-strong metal parts)


2022-08-03 アメリカ・ローレンスリバモア国立研究所(LLNL)

金属 3D プリンティングは、多くの商業用途向けのコンポーネントを製造するために使用されます。特に輸送部門では、レーザー パウダー ベッド フュージョン (L-PBF) などの印刷方法により、従来の方法では製造できない超強力で超軽量の複雑な形状のコンポーネントを製造できます。L-PBF 法を使用して、他の最先端の3Dプリント金属合金を超える高収率強度と高延性を示す一種の共晶HEA(EHEAs)を作製しました。また、この材料から格子構造やその他の工学部品も作製し、この技術の実用性を証明しました。この成果は、『Nature』誌のオンライン版に掲載されています。


アディティブマニファクチャリングによる強靭なナノラメラ高エントロピー合金の創製 Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing

Jie Ren,Yin Zhang,Dexin Zhao,Yan Chen,Shuai Guan,Yanfang Liu,Liang Liu,Siyuan Peng,Fanyue Kong,Jonathan D. Poplawsky,Guanhui Gao,Thomas Voisin,Ke An,Y. Morris Wang,Kelvin Y. Xie,Ting Zhu & Wen Chen
Nature  Published:03 August 2022


Additive manufacturing produces net-shaped components layer by layer for engineering applications1,2,3,4,5,6,7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.