材料欠陥の発生を予測する新しい機械学習モデル (Novel machine learning model can predict material failure before it happens)

2025-04-14 アメリカ合衆国・リーハイ大学

Lehigh大学の研究チームは、機械学習を用いて金属などの多結晶材料における「異常な結晶粒成長」を、破壊が始まる前の初期段階(素材寿命の約20%以内)で高精度に予測する新手法を開発した。LSTMとGCRNを組み合わせたモデルにより、見た目で区別できない微細な粒子挙動の違いを捉え、全ケースの約86%で異常成長の予測に成功。この技術は、航空宇宙や構造材料の信頼性向上に寄与し、相転移や病原体の変異など他分野への応用も期待されている。

材料欠陥の発生を予測する新しい機械学習モデル (Novel machine learning model can predict material failure before it happens)

<関連情報>

稀な現象の予測を学ぶ:異常な粒成長の事例 Learning to predict rare events: the case of abnormal grain growth

Houliang Zhou,Benjamin Zalatan,Joan Stanescu,Martin P. Harmer,Jeffrey M. Rickman,Lifang He,Christopher J. Marvel & Brian Y. Chen
npj Computational Materials  Published:27 March 2025
DOI:https://doi.org/10.1038/s41524-025-01530-8

Abstract

Abnormal grain growth (AGG) in polycrystalline microstructures, characterized by the rapid and disproportionate enlargement of a few “abnormal” grains relative to their surroundings, can lead to dramatic, often deleterious changes in the mechanical properties of materials, such as strength and toughness. Thus, the prediction and control of AGG is key to realizing robust mesoscale materials design. Unfortunately, it is challenging to predict these rare events far in advance of their onset because, at early stages, there is little to distinguish incipient abnormal grains from “normal” grains. To overcome this difficulty, we propose two machine learning approaches for predicting whether a grain will become abnormal in the future. These methods analyze grain properties derived from the spatio-temporal evolution of grain characteristics, grain-grain interactions, and a network-based analysis of these relationships. The first, PAL (Predicting Abnormality with LSTM), analyzes grain features using a long short-term memory (LSTM) network, and the second, PAGL (Predicting Abnormality with GCRN and LSTM), supplements the LSTM with a graph-based convolutional recurrent network (GCRN). We validated these methods on three distinct material scenarios with differing grain properties, observing that PAL and PAGL achieve high sensitivity and precision and, critically, that they are able to predict future abnormality long before it occurs. Finally, we consider the application of the deep learning models developed here to the prediction of rare events in different contexts.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました