電池のようなコンピューター・メモリーは1000°F以上でも作動し続ける(Battery-like computer memory keeps working above 1000°F)

ad

2024-12-09 ミシガン大学

ミシガン大学の研究チームは、タンタル酸化物を用いた新しい固体メモリデバイスを開発し、600℃(1,112°F)以上の高温環境でもデータの保存と書き換えが可能であることを実証しました。 この技術は、従来のシリコンベースのメモリが高温で動作不良を起こす問題を解決し、将来的には核融合炉やジェットエンジン、地熱井戸などの過酷な環境下での電子機器の信頼性向上に寄与することが期待されています。

<関連情報>

組成相分離により600℃で不揮発性電気化学メモリーを実現 Nonvolatile electrochemical memory at 600°C enabled by composition phase separation

Jingxian Li∙ Andrew J. Jalbert∙ Sangyong Lee∙ … ∙ Elliot J. Fuller∙ A. Alec Talin∙ Yiyang Li
Device  Published:December 3, 2024
DOI:https://doi.org/10.1016/j.device.2024.100623

Graphical abstract

電池のようなコンピューター・メモリーは1000°F以上でも作動し続ける(Battery-like computer memory keeps working above 1000°F)

The bigger picture

Moore’s law has led to monumental advances in computing over the past 50 years. However, one shortcoming of silicon-based logic and memory devices is their limited temperature range, typically <150°C. In this work, we present a solid-state memory device that can operate and store information at temperatures as high as 600°C. Rather than relying on the motion of electrons, this device stores information through the electrochemical migration of oxygen ions in transition metal oxides, a process that resembles that of solid oxide fuel cells and batteries. This memory device can expand the use of microelectronics in extreme environments, like deep energy wells, turbine engines, and space.

Highlights

•A solid-state memory device can switch and retain information at 600°C
•Information is stored via the electrochemical migration of oxygen vacancies
•Composition phase separation enables long-term information storage
•Transmission electron microscopy directly visualizes phase separation

Summary

Silicon-based microelectronics are limited to ∼150°C and therefore not suitable for the extremely high temperatures in aerospace, energy, and space applications. While wide-band-gap semiconductors can provide high-temperature logic, nonvolatile memory devices at high temperatures have been challenging. In this work, we develop a nonvolatile electrochemical memory cell that stores and retains analog and digital information at temperatures as high as 600°C. Through correlative scanning transmission electron microscopy, we show that this high-temperature information retention is a result of composition phase separation between the oxidized and reduced forms of amorphous tantalum oxide. This result demonstrates a memory concept that is resilient at extreme temperatures and reveals phase separation as the principal mechanism that enables nonvolatile information storage in these electrochemical memory cells.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました