原子炉の性能を向上させる、より高速で正確なAIアルゴリズムを開発(Engineers develop faster, more accurate AI algorithm for improving nuclear reactor performance)

ad

2024-06-25 パデュー大学

いくつかの国が小型モジュール炉(SMR)の設計を進めており、これにより原子力発電の利用が拡大される可能性があります。パデュー大学の研究では、人工知能(AI)を活用してSMRの監視と制御を改善し、運用と保守のコスト削減を目指しています。この研究は、SMRのデジタル計器とセンサーを活用し、AIがリアルタイムでデータを収集して性能を予測することで、99%の精度で原子炉の出力変動を予測できることを示しました。研究はパデュー大学とアルゴンヌ国立研究所の協力で行われ、デジタルツイン技術を利用してアルゴリズムの精度と学習時間の短縮を実現しました。これにより、原子炉の効率的な監視と制御が可能になり、将来的には遠隔監視や運転支援も期待されています。

<関連情報>

原子炉過渡現象予測のための領域類似性尺度に基づく転移学習付き物理情報ニューラルネットワーク(TL-PINN) Physics-informed neural network with transfer learning (TL-PINN) based on domain similarity measure for prediction of nuclear reactor transients

Konstantinos Prantikos,Stylianos Chatzidakis,Lefteri H. Tsoukalas & Alexander Heifetz
Scientific Reports  Published:06 October 2023
DOI:https://doi.org/10.1038/s41598-023-43325-1

原子炉の性能を向上させる、より高速で正確なAIアルゴリズムを開発(Engineers develop faster, more accurate AI algorithm for improving nuclear reactor performance)

Abstract

Nuclear reactor safety and efficiency can be enhanced through the development of accurate and fast methods for prediction of reactor transient (RT) states. Physics informed neural networks (PINNs) leverage deep learning methods to provide an alternative approach to RT modeling. Applications of PINNs in monitoring of RTs for operator support requires near real-time model performance. However, as with all machine learning models, development of a PINN involves time-consuming model training. Here, we show that a transfer learning (TL-PINN) approach achieves significant performance gain, as measured by reduction of the number of iterations for model training. Using point kinetic equations (PKEs) model with six neutron precursor groups, constructed with experimental parameters of the Purdue University Reactor One (PUR-1) research reactor, we generated different RTs with experimentally relevant range of variables. The RTs were characterized using Hausdorff and Fréchet distance. We have demonstrated that pre-training TL-PINN on one RT results in up to two orders of magnitude acceleration in prediction of a different RT. The mean error for conventional PINN and TL-PINN models prediction of neutron densities is smaller than 1%. We have developed a correlation between TL-PINN performance acceleration and similarity measure of RTs, which can be used as a guide for application of TL-PINNs.

2002原子炉システムの運転及び保守
ad
ad
Follow
ad
タイトルとURLをコピーしました