2023-10-05 カリフォルニア大学バークレー校(UCB)
◆マンガンベースの新しいナノ構造は、リチウムバッテリーのコストを削減し、希少な金属資源への依存を減少させる可能性があります。この技術はリチウムバッテリーの進化に寄与し、エネルギー貯蔵の未来に向けた一歩となります。
<関連情報>
- https://engineering.berkeley.edu/news/2023/10/creating-a-lithium-ion-battery-for-the-future/
- https://www.nature.com/articles/s41560-023-01375-9
地球上に豊富に存在するMnリッチな正極材料としてその場で形成された部分的無秩序相 In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials
Zijian Cai,Bin Ouyang,Han-Ming Hau,Tina Chen,Raynald Giovine,Krishna Prasad Koirala,Linze Li,Huiwen Ji,Yang Ha,Yingzhi Sun,Jianping Huang,Yu Chen,Vincent Wu,Wanli Yang,Chongmin Wang,Raphaële J. Clément,Zhengyan Lun & Gerbrand Ceder
Nature Energy Published:05 October 2023
DOI:https://doi.org/10.1038/s41560-023-01375-9
Abstract
Earth-abundant cathode materials are urgently needed to enable scaling of the Li-ion industry to multiply terawatt hours of annual production, necessitating reconsideration of how good cathode materials can be obtained. Irreversible transition metal migration and phase transformations in Li-ion cathodes are typically believed to be detrimental because they may trigger voltage hysteresis, poor kinetics and capacity degradation. Here we challenge this conventional consensus by reporting an unusual phase transformation from disordered Li- and Mn-rich rock salts to a new phase (named δ), which displays partial spinel-like ordering with short coherence length and exhibits high energy density and rate capability. Unlike other Mn-based cathodes, the δ phase exhibits almost no voltage fade upon cycling. We identify the driving force and kinetics of this in situ cathode formation and establish design guidelines for Li- and Mn-rich compositions that combine high energy density, high rate capability and good cyclability, thereby enabling Mn-based energy storage.