海洋温度差発電の冷排水に関する環境アセスメントで海底観測の効率化と高精度化を実現~社会実装へ向けた共同研究の成果が国際学術誌に掲載~

2025-09-24 株式会社商船三井,東京大学,琉球大学

東京大学新領域創成科学研究科らの共同研究は、海洋温度差発電(OTEC)の冷排水放出に伴う環境影響を精密に評価できる新手法を開発した。従来の海底観測はセンサー設置やデータ取得に大きな労力を要したが、本研究では海中ロボットを活用し、海底地形や水塊構造を考慮した高解像度観測を効率的に実現。シミュレーションと組み合わせることで、冷排水が海洋環境に与える影響を三次元的に予測できるようになった。成果は、OTECの社会実装に不可欠な環境アセスメントの信頼性向上につながり、再生可能エネルギーの普及を後押しする。研究成果はRenewable Energy誌に掲載された。

海洋温度差発電の冷排水に関する環境アセスメントで海底観測の効率化と高精度化を実現~社会実装へ向けた共同研究の成果が国際学術誌に掲載~
図1:曳航式の海底環境調査ツール Speedy Sea Scanner
(a)曳航用ロープによって調査船に引かれている様子(b)下から撮影した様子

<関連情報>

大規模なサンゴ礁の迅速な監視とマッピングのための強化された曳航式カメラアレイを備えた、マルチデータセット統合Coral-Labセグメンテーション Multi-dataset-integrated Coral-Lab segmentation with enhanced towed camera array for rapid large-scale coral reef monitoring and mapping

Jiaqi Wang, Katsunori Mizuno, Shigeru Tabeta, Tetsushi Matsuoka, Tomo Odake, Satoshi Igei, Taro Uejo, Takashi Nakamura
International Journal of Applied Earth Observation and Geoinformation  Available online: 17 September 2025
DOI:https://doi.org/10.1016/j.jag.2025.104819

Highlights

  • An advanced towed optical camera array, SSSv2, was used for rapid and large-scale coral reef monitoring.
  • The development of a semantic segmentation model, Coral-Lab, boosts precise automatic coral recognition.
  • Multi-datasets were integrated to optimize model training to achieve higher recognition accuracy.
  • Large-scale and high-resolution seafloor reconstruction and coral distribution mapping supports coral reef conservation.

Abstract

Highly efficient and reliable monitoring of coral reef ecosystems is imperative for effective conservation and management under increasing anthropogenic and climatic pressures. However, current survey techniques either offer limited coverage and low efficiency or incur substantial manual costs for data processing. In this study, we propose a highly efficient towed optical camera array system, Speedy Sea Scanner version 2.0 (SSSv2), with an advanced electrical system supporting a stable power supply, reliable communications, and underwater illumination, which enables continuous video data collection and real-time monitoring. We also develop a semantic segmentation model, Coral-Lab, with high accuracy and robustness in coral identification task, which enables fully automated coral reef identification and coral coverage calculation. Coral-Lab model achieved an F-score of 0.802 and an mIoU of 0.665 on our test set. Leveraging SSSv2, we conducted field surveys off the northern coast of Kumejima Island, Okinawa, Japan, on July 14, 2024 and July 15, 2024 across seven sampling areas comprising 29 transect lines. Over two days survey, we collected video data covering a total seafloor area of 47,950 m2, which was converted into a georeferenced orthomosaic at an average spatial resolution of 2.5 mm via Structure-from-Motion (SfM) and Multi-View Stereo (MVS) techniques. This approach achieved an effective survey efficiency of approximately 7200 m2 per hour. Applying Coral-Lab model to 25,658 orthomosaic tiles at a 0.25 m grid resolution, we generated detailed coral-cover distribution maps in under 75 min of inference time, processing each 512 × 512-pixel tile in 0.17 s. These results demonstrate the synergistic potential of integrating advanced imaging hardware with deep learning algorithms, enabling rapid, large-scale coral reef monitoring and assessments.

0202海洋空間利用
ad
ad
Follow
ad
タイトルとURLをコピーしました