AI技術が量子原子振動を解明(New AI Technique Unravels Quantum Atomic Vibrations in Materials)

2025-09-16 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学(Caltech)の研究チームは、人工知能を活用して固体中の量子振動(フォノン)の複雑なパターンを解析する新手法を開発した。フォノンは材料の熱伝導や電気特性を左右する重要な要素だが、従来の理論や計算では解析が困難だった。今回のAI技術は膨大な実験データと量子力学モデルを組み合わせ、原子の振る舞いを高精度に再現。これにより、熱を効率的に制御できる新素材や、量子コンピューティングに適した材料探索が加速すると期待される。成果は「Nature Materials」に発表され、エネルギー効率改善や次世代デバイス開発への応用が見込まれている。

AI技術が量子原子振動を解明(New AI Technique Unravels Quantum Atomic Vibrations in Materials)
Inspired by recent advances in machine learning, Caltech scientists have developed an AI-based technique that sifts through the high-order tensors that encode phonon interactions in a material and extracts only the crucial bits needed to complete the calculations that explain thermal transport.Credit: Rosa Romano, EAS Communications/Caltech

<関連情報>

Nフォノン相互作用のテンソル学習と圧縮 Tensor Learning and Compression of N-Phonon Interactions

Yao Luo, Dhruv Mangtani, Shiyu Peng, Jia Yao, Sergei Kliavinek, and Marco Bernardi
Physical Review Letters  Published: 16 September, 2025
DOI: https://doi.org/10.1103/nmgj-yq1g

Abstract

Phonon interactions from lattice anharmonicity govern thermal properties and heat transport in materials. These interactions are described by th order interatomic force constants (IFCs), which can be viewed as high-dimensional tensors correlating the motion of atoms, or equivalently encoding -phonon scattering processes in momentum space. Here, we introduce a tensor decomposition to efficiently compress IFCs for arbitrary order . Using tensor learning, we find optimal low-rank approximations of IFCs by solving the resulting optimization problem. Our approach reveals the inherent low dimensionality of phonon-phonon interactions and allows compression of the three- and four-IFC tensors by factors of up to 103–104 while retaining high accuracy in calculations of phonon scattering rates and thermal conductivity. Calculations of thermal conductivity using the compressed IFCs achieve a speedup by nearly 3 orders of magnitude with >98% accuracy relative to the reference uncompressed solution. These calculations include both three- and four-phonon scattering and are shown for a diverse range of materials (Si, HgTe, MgO, TiNiSn, and ZrO2). In addition to accelerating state-of-the-art thermal transport calculations, the method shown here paves the way for modeling strongly anharmonic materials and higher-order phonon interactions.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました