水田のイネと雑草を識別するAI基盤データ「RiceSEG」公開~スマート農業と育種を加速する国際共同研究~

2025-09-16 東京大学

東京大学や京都大学、中国南京農業大学など5か国12機関の国際共同研究チームは、水田で撮影したイネと雑草の識別用AI基盤データセット「RiceSEG」を世界で初めて公開した。RiceSEGはイネの葉・穂・雑草などを6クラスに分類できる大規模画像データで、5万枚以上の圃場画像から3,000枚超を高精度にアノテーションしたもの。直播栽培(水田に直接種をまく方式)は省力的で持続可能性が高いが、雑草との競合が大きな課題となる。RiceSEGはこうした課題を克服するため、AIによる自動雑草検出や効率的除草、さらに収量予測や品種改良の高度化に役立つ。公開データはスマート農業や育種研究の加速につながり、食料安全保障や持続可能な農業生産への貢献が期待されている。

水田のイネと雑草を識別するAI基盤データ「RiceSEG」公開~スマート農業と育種を加速する国際共同研究~
RiceSEGデータセット

<関連情報>

グローバル稲マルチクラスセグメンテーションデータセット(RiceSEG):稲セグメンテーションアルゴリズムの開発と評価のための包括的かつ多様な高解像度RGB注釈付き画像 Global Rice Multiclass Segmentation Dataset (RiceSEG): Comprehensive and Diverse High-Resolution RGB-Annotated Images for the Development and Benchmarking of Rice Segmentation Algorithms

Junchi Zhou, Haozhou Wang, Yoichiro Kato, Tejasri Nampally, P. Rajalakshmi, M. Balram, Keisuke Katsura, Hao Lu, Yue Mu, Wanneng Yang, Yangmingrui Gao, Feng Xiao, Hongtao Chen, Yuhao Chen, Wenjuan Li, Jingwen Wang, Fenghua Yu, Jian Zhou, Wensheng Wang, Xiaochun Hu …Shouyang Liu
Plant Phenomics  Available online: 4 September 2025
DOI:https://doi.org/10.1016/j.plaphe.2025.100099

Abstract:

The development of computer vision-based rice phenotyping techniques is crucial for precision field management and accelerated breeding, which facilitate continuously advancing rice production. Among phenotyping tasks, distinguishing image components is a key prerequisite for characterizing plant growth and development at the organ scale, enabling deeper insights into ecophysiological processes. However, owing to the fine structure of rice organs and complex illumination within the canopy, this task remains highly challenging, underscoring the need for a high-quality training dataset. Such datasets are scarce, both because of a lack of large, representative collections of rice field images and because of the time-intensive nature of the annotation. To address this gap, we created the first comprehensive multiclass rice semantic segmentation dataset, RiceSEG. We gathered nearly 50,000 high-resolution, ground-based images from five major rice-growing countries (China, Japan, India, the Philippines, and Tanzania), encompassing more than 6,000 genotypes across all growth stages. From these original images, 3,078 representative samples were selected and annotated with six classes (background, green vegetation, senescent vegetation, panicle, weeds, and duckweed) to form the RiceSEG dataset. Notably, the subdataset from China spans all major genotypes and rice-growing environments from northeastern to southern regions. Both state-of-the-art convolutional neural networks and transformer-based semantic segmentation models were used as baselines. While these models perform reasonably well in segmenting background and green vegetation, they face difficulties during the reproductive stage, when canopy structures are more complex and when multiple classes are involved. These findings highlight the importance of our dataset for developing specialized segmentation models for rice and other crops. The RiceSEG dataset is publicly available at www.global-rice.com.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました