機械学習を駆使した原子シミュレーションで核燃料の高温物性の解明に挑む~酸化物核燃料が示す高温での特異な挙動の仕組みを原子レベルで究明~

2025-07-15 日本原子力研究開発機構

日本原子力研究開発機構は、AI技術「機械学習分子動力学法」を用いて、酸化物核燃料の高温比熱異常の原因を原子レベルで解明した。シミュレーションにより、比熱上昇は酸素原子が固体中で液体のように振る舞う「部分的液体化」によると判明。二酸化トリウムの融点やブリディク転移も高精度に再現し、原子炉の安全評価や次世代核燃料開発に貢献。イオン伝導体など機能性材料解析への応用も期待される。

機械学習を駆使した原子シミュレーションで核燃料の高温物性の解明に挑む~酸化物核燃料が示す高温での特異な挙動の仕組みを原子レベルで究明~

<関連情報>

(反)蛍石材料における比熱異常と局所対称性の破れ:機械学習分子動力学研究
Specific heat anomalies and local symmetry breaking in (anti-)fluorite materials: A machine learning molecular dynamics study

Keita KobayashiCorresponding Author;Hiroki Nakamura;Masahiko Okumura;Mitsuhiro Itakura;Masahiko Machida
The Journal of Chemical Physics  Published:June 27 2025
DOI:https://doi.org/10.1063/5.0262059

Understanding the high-temperature properties of materials with (anti-)fluorite structures is crucial for their application in nuclear reactors. In this study, we employ machine learning molecular dynamics (MLMD) simulations to investigate the high-temperature thermal properties of thorium dioxide, which has a fluorite structure, and lithium oxide, which has an anti-fluorite structure. Our results show that MLMD simulations effectively reproduce the reported thermal properties of these materials. A central focus of this work is the analysis of specific heat anomalies in these materials at high temperatures, commonly referred to as Bredig, pre-melting, or λ-transitions. We demonstrate that a local order parameter, analogous to those used to describe liquid–liquid transitions in supercooled water and liquid silica, can effectively characterize these specific heat anomalies. The local order parameter identifies two distinct types of defective structures: lattice defect-like and liquid-like local structures. Above the transition temperature, liquid-like local structures predominate and the sub-lattice character of mobile atoms disappears.

2003核燃料サイクルの技術
ad
ad
Follow
ad
タイトルとURLをコピーしました