“悪者”水素が味方に:中性子が明かす金属の強度・延性向上メカニズム~水素に強い金属材料を開発し、より安全な水素社会を目指す~

ad

2025-04-01 日本原子力研究開発機構,J-PARCセンター

日本原子力研究開発機構(JAEA)の研究チームは、J-PARCの中性子回折装置TAKUMIを用いて、ステンレス鋼(SUS310S)における水素添加が強度と延性を向上させるメカニズムを解明しました。水素が金属の結晶格子に侵入し、わずかな膨張と歪みを引き起こすことで、転位の移動を妨げる「固溶強化」が生じ、これにより強度が向上します。さらに、この固溶強化が変形双晶の形成を促進し、延性の向上にも寄与することが明らかになりました。この成果は、水素エネルギー社会の実現に向けた高強度・高延性材料の開発に貢献するものと期待されます。

<関連情報>

Fe-24Cr-19Niオーステナイト鋼の機械的特性向上における溶質水素の役割: その場中性子回折による研究 Role of solute hydrogen on mechanical property enhancement in Fe–24Cr–19Ni austenitic steel: An in situ neutron diffraction study

Tatsuya Ito, Yuhei Ogawa, Wu Gong, Wenqi Mao, Takuro Kawasaki, Kazuho Okada, Akinobu Shibata, Stefanus Harjo
Acta Materialia  Available online: 22 January 2025
DOI:https://doi.org/10.1016/j.actamat.2025.120767

Graphical abstract

“悪者”水素が味方に:中性子が明かす金属の強度・延性向上メカニズム~水素に強い金属材料を開発し、より安全な水素社会を目指す~

Abstract

Incorporating solute hydrogen into Fe–Cr–Ni-based austenitic stainless steels enhances both strength and ductility, providing a promising solution to hydrogen embrittlement by causing solid-solution strengthening and assisting deformation twinning. However, its impacts on the relevant lattice defects evolution (i.e., dislocations, stacking faults, and twins) during deformation remains unclear. This study compared the tensile deformation behavior in an Fe–24Cr–19Ni (mass%) austenitic steel with 7600 atom ppm hydrogen-charged (H-charged) and without hydrogen-charged (non-charged) using in situ neutron diffraction. Hydrogen effects on the lattice expansion, solid-solution strengthening, stacking fault probability, stacking fault energy, dislocation density, and strain/stress for twin evolution were quantitatively evaluated to link them with the macroscale mechanical properties. The H-charged sample showed improvements in yield stress, flow stress, and uniform elongation, consistent with earlier findings. However, solute hydrogen exhibited minimal influences on the evolution of dislocation and stacking fault. This fact contradicts the previous reports on hydrogen-enhanced dislocation and stacking fault evolutions, the latter of which can be responsible for the enhancement of twinning. The strain for twin evolution was smaller in the H-charged sample compared to the non-charged one. Nevertheless, when evaluated as the onset stress for twin evolution, there was minimal change between the two samples. These findings suggest that the increase in flow stress due to the solid-solution strengthening by hydrogen is a root cause of accelerated deformation twinning at a smaller strain, leading to an enhanced work-hardening rate and improved uniform elongation.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました