高解像度地表面温度観測モデル「GLOSTFM」を開発(Scientists Develop GLOSTFM Model for High-resolution Global Land Surface Temperature Observation)

ad

2025-03-21 中国科学院(CAS)

高解像度地表面温度観測モデル「GLOSTFM」を開発(Scientists Develop GLOSTFM Model for High-resolution Global Land Surface Temperature Observation)GLOSTFM multi-temporal display based on FY-3D data. (Image by AIR)

中国科学院(CAS)の研究者らは、人工知能(AI)と量子コンピューティングを融合させた新しいアルゴリズムを開発しました。このアルゴリズムは、量子コンピュータの計算能力を活用して、従来のAIモデルよりも高速かつ高精度なデータ解析を実現します。研究チームは、金融市場の予測や医療診断など、多岐にわたる分野での応用可能性を示唆しています。この成果は、AIと量子コンピューティングの統合による新たな可能性を切り拓くものとして注目されています。

<関連情報>

GLOSTFM:地表面温度の解像度を向上させるためのマルチソース衛星観測を統合した全球時空間融合モデル GLOSTFM: A global spatiotemporal fusion model integrating multi-source satellite observations to enhance land surface temperature resolution

Qingyan Meng, Shize Chen, Linlin Zhang, Xiaolin Zhu, Yeping Zhang, Peter M. Atkinson
Remote Sensing of Environment  Available online: 9 February 2025
DOI:https://doi.org/10.1016/j.rse.2025.114640

Highlights

  • GLOSTFM is the first model used for global scale LST spatiotemporal fusion.
  • GLOSTFM outperforms five methods in spatial details and time consumption.
  • GLOSTFM considers Chinese Fengyun satellite microwave and infrared data.
  • GLOSTFM can support high-frequency thermal monitoring applications.

Abstract

Land surface temperature (LST) data are crucial for global climate change research. While remote sensing data serve as a key source for LST, single-source sensor data often lack spatiotemporal continuity due to long satellite revisit intervals and cloud cover. Spatiotemporal fusion, which combines the strengths of multiple sources, can increase the available information. However, most current spatiotemporal fusion methods are designed for local-scale applications. This research proposes the Global Spatiotemporal Fusion Model (GLOSTFM) to generate global LST products. GLOSTFM, built on image pyramid principles, addresses the computational and complexity challenges of global-scale spatiotemporal fusion. Moreover, the model utilizes data from the novel Fengyun-3D satellite, which has a daily revisit capability and provides LST products separately derived from its thermal infrared (MERSI, 1 km) and microwave (MWRI, 25 km) sensors. By leveraging the cloud-penetrating capabilities of the microwave data to compensate for missing information, GLOSTFM increases the available information and reduces observational uncertainties. The results showcase high processing efficiency and enhanced spatiotemporal continuity, with an average RMSE of 2.874 K and an excellent R2 of 0.980. The utility of the GLOSTFM model for monitoring urban heat island effects in Beijing was explored to illustrate one application among a broad range of potential applications of the proposed GLOSTFM that require global data on LST across the Earth’s surface.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました