AIが人間らしいゲームを生成(AI Generates Playful, Human-Like Games)

ad

2025-02-26 ニューヨーク大学(NYU)

ニューヨーク大学(NYU)の研究チームは、人工知能(AI)を活用して人間のような遊び心のあるゲームを生成する新しいコンピュータモデルを開発しました。このモデルは、プログラム合成を用いて人間が作成した目標をデータセットとして学習し、新たな目標を生成します。生成されたゲームは、独立した人間の評価者によって人間が作成したものと区別がつかないと評価されました。この研究は、AIが人間の創造性を理解し、模倣する能力を高める可能性を示しています。

<関連情報>

報酬を生み出すプログラムとしての目標 Goals as reward-producing programs

Guy Davidson,Graham Todd,Julian Togelius,Todd M. Gureckis & Brenden M. Lake
Nature Machine Intelligence  Published:21 February 2025
DOI:https://doi.org/10.1038/s42256-025-00981-4

A preprint version of the article is available at arXiv.

AIが人間らしいゲームを生成(AI Generates Playful, Human-Like Games)

Abstract

People are remarkably capable of generating their own goals, beginning with child’s play and continuing into adulthood. Despite considerable empirical and computational work on goals and goal-oriented behaviour, models are still far from capturing the richness of everyday human goals. Here we bridge this gap by collecting a dataset of human-generated playful goals (in the form of scorable, single-player games), modelling them as reward-producing programs and generating novel human-like goals through program synthesis. Reward-producing programs capture the rich semantics of goals through symbolic operations that compose, add temporal constraints and allow program execution on behavioural traces to evaluate progress. To build a generative model of goals, we learn a fitness function over the infinite set of possible goal programs and sample novel goals with a quality-diversity algorithm. Human evaluators found that model-generated goals, when sampled from partitions of program space occupied by human examples, were indistinguishable from human-created games. We also discovered that our model’s internal fitness scores predict games that are evaluated as more fun to play and more human-like.

1602ソフトウェア工学
ad
ad
Follow
ad
タイトルとURLをコピーしました