新しい計算顕微鏡技術が鮮明な画像への近道を提供する(New Computational Microscopy Technique Provides More Direct Route to Crisp Images)

ad

2024-06-28 カリフォルニア工科大学(Caltech)

何世紀もの間、顕微鏡の明瞭度と拡大率は光学レンズの物理的特性によって制約されていました。2013年、Caltechの技術者チームはFPM(Fourier Ptychographic Microscopy)という計算機顕微鏡法を導入しました。この技術は、従来の顕微鏡とコンピュータアルゴリズムを組み合わせ、高解像度かつ広視野の画像を安価な装置で得ることができます。最近、同じ研究所がAPIC(Angular Ptychographic Imaging with Closed-form method)という新しい方法を開発しました。これは、FPMの利点を維持しつつ、より少ない測定回数でぼやけや歪みのない画像を取得します。APICは、試行錯誤を排除し、線形方程式を解くことで光学系の歪みを補正します。これにより、大視野をカバーするクリアな画像を迅速かつ正確に得ることができます。この技術は、生物医学画像やデジタル病理学、薬物スクリーニングにおける進展をもたらす可能性があります。

<関連情報>

収差補正された閉形式複素場再構成による高解像度、大視野ラベルフリーイメージング High-resolution, large field-of-view label-free imaging via aberration-corrected, closed-form complex field reconstruction

Ruizhi Cao,Cheng Shen & Changhuei Yang
Nature Communications  Published:03 June 2024
DOI:https://doi.org/10.1038/s41467-024-49126-y

新しい計算顕微鏡技術が鮮明な画像への近道を提供する(New Computational Microscopy Technique Provides More Direct Route to Crisp Images)

Abstract

Computational imaging methods empower modern microscopes to produce high-resolution, large field-of-view, aberration-free images. Fourier ptychographic microscopy can increase the space-bandwidth product of conventional microscopy, but its iterative reconstruction methods are prone to parameter selection and tend to fail under excessive aberrations. Spatial Kramers–Kronig methods can analytically reconstruct complex fields, but is limited by aberration or providing extended resolution enhancement. Here, we present APIC, a closed-form method that weds the strengths of both methods while using only NA-matching and darkfield measurements. We establish an analytical phase retrieval framework which demonstrates the feasibility of analytically reconstructing the complex field associated with darkfield measurements. APIC can retrieve complex aberrations of an imaging system with no additional hardware and avoids iterative algorithms, requiring no human-designed convergence metrics while always obtaining a closed-form complex field solution. We experimentally demonstrate that APIC gives correct reconstruction results where Fourier ptychographic microscopy fails when constrained to the same number of measurements. APIC achieves 2.8 times faster computation using image tile size of 256 (length-wise), is robust against aberrations compared to Fourier ptychographic microscopy, and capable of addressing aberrations whose maximal phase difference exceeds 3.8π when using a NA 0.25 objective in experiment.

広視野、高解像度のフーリエ・プティコグラフィ顕微鏡法 Wide-field, high-resolution Fourier ptychographic microscopy

Guoan Zheng,Roarke Horstmeyer & Changhuei Yang
Nature Photonics  Published:28 July 2013
DOI:https://doi.org/10.1038/nphoton.2013.187

A Corrigendum to this article was published on 27 August 2015
This article has been updated

extended data figure 1

Abstract

We report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth of focus beyond the physical limitations of its optics.As a demonstration, we built a microscope prototype with a half-pitch resolution of 0.78 µm, a field of view of ∼120 mm2 and a resolution-invariant depth of focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify successful FPM operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation.

0110情報・精密機器
ad
ad
Follow
ad
タイトルとURLをコピーしました