信じられないほど精密な新しい装置で、ダークエネルギーの探索範囲を狭める(With a new, incredibly precise instrument, Berkeley researchers narrow search for dark energy)

ad

2024-06-26 カリフォルニア大学バークレー校(UCB)

カリフォルニア大学バークレー校の物理学者たちは、宇宙を加速膨張させる暗黒エネルギーの原因となる新しい粒子を探すために、最も精密な実験を開発しました。この実験では、原子干渉計と光格子を組み合わせて重力を測定し、自由落下する原子を秒単位で固定しました。研究者たちは、理論的なカメレオンやシンメトロンと呼ばれる粒子の存在を示す重力の微小な偏差を見つけようとしましたが、ニュートンの理論からの偏差は見つかりませんでした。しかし、実験の精度向上により、将来的にこれらの仮説的な粒子の証拠が見つかる可能性があります。この研究は、重力の量子特性を探る新たな道を開くもので、暗黒エネルギーの理解に寄与します。

<関連情報>

格子原子干渉計で重力引力を測定する Measuring gravitational attraction with a lattice atom interferometer

Cristian D. Panda,Matthew J. Tao,Miguel Ceja,Justin Khoury,Guglielmo M. Tino & Holger Müller
Nature  Published:26 June 2024
DOI:https://doi.org/10.1038/s41586-024-07561-3

  • extended data figure 1

Abstract

Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity1, the gravitational constant2, deviations from Newtonian gravity3,4,5,6 and general relativity7. However, using atoms in free fall limits measurement time to a few seconds8, and much less when measuring interactions with a small source mass2,5,6,9. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated10,11,12,13,14. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened fifth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall5,6. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges17,18, compact gravimetry19,20,21,22, measuring the gravitational Aharonov–Bohm effect9,23 and the gravitational constant2, and testing whether the gravitational field has quantum properties24.

格子原子干渉計における1分スケールのコヒーレンス限界 Coherence limits in lattice atom interferometry at the one-minute scale

Cristian D. Panda,Matthew Tao,James Egelhoff,Miguel Ceja,Victoria Xu & Holger Müller
Nature Physics  Published:11 June 2024
DOI:https://doi.org/10.1038/s41567-024-02518-9

extended data figure 1

Abstract

In quantum metrology and quantum simulation, a coherent non-classical state must be manipulated before unwanted interactions with the environment lead to decoherence. In atom interferometry, the non-classical state is a spatial superposition, where each atom coexists in multiple locations as a collection of phase-coherent partial wavepackets. These states enable precise measurements in fundamental physics and inertial sensing. However, atom interferometers usually use atomic fountains, where the available interrogation time is limited to around 3 s for a 10 m fountain. Here we realize an atom interferometer with a spatial superposition state that is maintained for as long as 70 s. We analyse the theoretical and experimental limits to coherence arising from collective dephasing of the atomic ensemble. This reveals that the decoherence rate slows down markedly at hold times that exceed tens of seconds. These gains in coherence may enable gravimetry measurements, searches for fifth forces or fundamental probes into the non-classical nature of gravity.

ad
1701物理及び化学
ad
ad


Follow
ad
タイトルとURLをコピーしました