リサイクル可能な植物由来の素材が次世代風力タービンに採用される可能性(Recyclable, Plant-Based Material Could Take a Spin on Next Generation of Wind Turbines)

ad

2023-12-11 米国国立再生可能エネルギー研究所(NREL)

◆米国国立再生可能エネルギー研究所(NREL)の研究者らが、風力タービンのブレードをつなぐ中央接着剤として容易にリサイクル可能な樹脂「PECAN」を開発しました。
◆植物の廃棄物から抽出できる生物ベースの化学物質を使用し、炭化水素を必要とせずに製造されるため、持続可能性とリサイクル性が向上します。PECAN樹脂は、風力タービンブレードの製造において、温室効果ガス排出が40%少なく、エネルギー使用量が30%少ないという優れた性能を発揮し、構造的なパフォーマンスも向上しています。将来的に風力発電産業において持続可能な解決策となる可能性があります。

<関連情報>

バイオ由来ポリエステル共有結合適応性ネットワークの合成、特性評価、および産業用複合材料用途へのリサイクル Synthesis, characterization, and recycling of bio-derivable polyester covalently adaptable networks for industrial composite applications

Chen Wang,Avantika Singh,Erik G. Rognerud,Robynne Murray,Grant M. Musgrave,Morgan Skala,Paul Murdy,Jason S. DesVeaux,Scott R. Nicholson,Kylee Harris,Richard Canty,Fabian Mohr,Alison J. Shapiro,David Barnes,Ryan Beach,Robert D. Allen,Gregg T. Beckham,Nicholas A. Rorrer
Published:December 05, 2023
DOI:https://doi.org/10.1016/j.matt.2023.10.033

Highlights

•Recyclable epoxy-anhydride resins are designed in analogy to epoxy amine resins
•Recyclable resins can be manufactured in the same way as non-recyclable resins
•The recyclable resins exhibit comparable performance in fiber-reinforced plastics
•Analysis reveals up to a 40% reduction in GHG emissions and a comparable cost

Progress and potential

Fiber-reinforced polymers (FRPs) can contribute to a decarbonized society by light-weighting transportation applications and enabling robust wind turbines. Despite this, the manufacture and inability of FRP component parts to be reused contributes to growing material waste and continued greenhouse gas emissions. To decarbonize composite manufacturing, it is possible to redesign the thermosetting polymer used in these composites to be sourced from bio-derivable feedstocks and to be inherently recyclable while exhibiting the same performance and manufacturing characteristics. Within the present work, we accomplish this goal by leveraging bio-based epoxies and anhydrides to make PECANs that maintain the requisite performance while being depolymerizable using inexpensive reagents, resulting in completely recyclable resins.

Summary

Fiber-reinforced polymers (FRPs) are critical for energy-relevant applications such as wind turbine blades. Despite this, the end-of-life options for FRPs are limited as they are permanently cross-linked thermosets. To enable the circularity of FRPs, we formulated a bio-derivable polyester covalently adaptable network (PECAN), sometimes referred to as a polyester vitrimer, to manufacture FRPs at >1 kg scale, which is accomplished as the resin is infusible (175–425 cP at 25°C viscosity), can be cured at 80°C within 5 h and is depolymerizable via methanolysis yielding high-quality fibers and recoverable hardener. The FRPs exhibit a transverse tensile modulus comparable with today’s wind relevant FRPs (10.4–11.9 GPa). Modeling estimates a resin minimum selling price of $2.28/kg and, relative to an epoxy-amine resin, PECAN manufacture requires 19%–21% less supply chain energy and emits 33%–35% less greenhouse gas emissions. Overall, this study suggests that redesigned thermosets can yield beneficial circularity.

Graphical abstract

Figure thumbnail fx1

 

ad

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました