ナノスケール材料が炎を制御する新しい方法を提供する(Nanoscale Material Offers New Way to Control Fire)

ad

2023-08-14 ノースカロライナ州立大学(NCState)

◆研究者は、高温の炎を使用して材料を処理する際、炎の挙動を制御することが難しいが、分子の薄い保護層を利用する技術を開発。この逆熱分解(ITD)技術は、ナノスケールの薄膜を材料にコーティングし、炎の熱と材料との相互作用を制御し、材料の特性を調整する。
◆保護層は炎の熱に反応して変化し、酸素のアクセスを制御し、材料の加熱速度や化学反応をコントロールできる。この方法により、炭素チューブの生成など幅広い応用が期待されている。

<関連情報>

熱的にモーフィングされた表面付加体を介した空間的指向性熱分解 Spatially Directed Pyrolysis via Thermally Morphing Surface Adducts

Chuanshen Du, Paul Gregory, Dhanush U. Jamadgni, Alana M. Pauls, Julia J. Chang, Rick W. Dorn, Andrew Martin, E. Johan Foster, Aaron J. Rossini, Martin Thuo
Angewandte Chemie International Edition  Published: 19 July 2023
DOI:https://doi.org/10.1002/anie.202308822

Graphical Abstract

Taming fire: Using morphing surfaces to control ignition and mass transport turns combustion to pyrolysis, hence slows rate of thermal degradation. Pyrolysis leads to incomplete combustion, hence graphitic tubes. This being a surface process, nm to μm wide tubes are produced.

ナノスケール材料が炎を制御する新しい方法を提供する(Nanoscale Material Offers New Way to Control Fire)

Abstract

Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán’s equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました