ステップ・バイ・ステップ:バークレー校のロボット、記録的な速さで自力歩行を習得(Step by step:Berkeley robots learn to walk on their own in record time)

ad

2022-10-26 カリフォルニア大学バークレー校(UCB)

ステップ・バイ・ステップ:バークレー校のロボット、記録的な速さで自力歩行を習得(Step by step:Berkeley robots learn to walk on their own in record time)
A quadruped robot learns to walk on different types of terrain during an experiment by Berkeley researchers in Sergey Levine’s lab. (Photo courtesy of Laura Smith)

研究者たちは、機械学習の進歩を利用して、2つの別々のチームが、四足歩行ロボットの現場での訓練時間を短縮する最先端のアプローチを開発し、記録的な速さで歩行や寝返りさえできるようになった。
研究者チームは、ロボット工学の分野では初めて、モデルやシミュレーションによる事前学習なしに、ロボットがわずか20分で歩けるようになることを実証した。このロボットは、歩行に必要な動きを習得し、さまざまな環境に適応するために、現場での試行錯誤だけに頼っていたため、今回のデモンストレーションは大きな前進と言える。
研究者チームは、RLアルゴリズムと機械学習フレームワークの進歩を活用することで、学習速度を加速させることに成功した。このアプローチにより、ロボットは環境と相互作用しながら、失敗からより効率的に学習することができるようになった。

<関連情報>

公園を散歩する:デルフリー強化学習で20分で歩けるようになる
A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning

Laura Smith, Ilya Kostrikov, Sergey Levine
arXiv  Submitted: 16 Aug 2022
DOI:https://doi.org/10.48550/arXiv.2208.07860

Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments that do not require domain knowledge. Unfortunately, due to sample inefficiency, deep RL applications have primarily focused on simulated environments. In this work, we demonstrate that the recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped locomotion in only 20 minutes in the real world. We evaluate our approach on several indoor and outdoor terrains which are known to be challenging for classical model-based controllers. We observe the robot to be able to learn walking gait consistently on all of these terrains. Finally, we evaluate our design decisions in a simulated environment.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました