これまでで最も明瞭な重力波信号を用いてアインシュタインの一般相対性理論を検証(Testing Einstein’s Theory of Relativity with the Clearest Gravitational-wave Signal Yet)

2026-01-29 マックス・プランク研究所

国際的な研究チームが、重力波信号 GW250114 を使い、アインシュタインの一般相対性理論を極めて厳密に検証した。この信号は既知の中で最も明瞭なブラックホール合体由来の重力波であり、約13億光年先で30〜40太陽質量のブラックホール同士が衝突した際に発生した。研究では、合体後に残るブラックホールが振動する「リングダウン」段階の重力波を解析し、基本モードと第1高調波、さらに3番目のトーンを同定または制限することに成功した。これらのモードの周波数と減衰時間は一般相対性理論の予測と一致し、理論からの逸脱がないことをこれまでで最も高い精度で示した。単一の信号のみの分析でも、数十件の過去信号を統合した結果より2〜3倍厳しい制約が得られた。これにより、ブラックホールが回転するアインシュタイン理論の解(カー・メトリック)に従うことがより強く裏付けられた。

これまでで最も明瞭な重力波信号を用いてアインシュタインの一般相対性理論を検証(Testing Einstein’s Theory of Relativity with the Clearest Gravitational-wave Signal Yet)
Visualization of a binary black hole ringdown consistent with the gravitational-wave event GW250114.The gravitational waves are separated into two modes of the ringing remnant black hole, identified in the observation: the fundamental mode (green) and its first overtone (red). It also shows a predicted third tone (yellow) that the data places limits on. Visualization performed at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute), based on a numerical relativity simulation of the Simulating Extreme Spacetimes (SXS) Project.© H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), K. Mitman (Cornell University)

<関連情報>

GW250114によるブラックホール分光と一般相対性理論の検証 Black Hole Spectroscopy and Tests of General Relativity with GW250114

A. G. Abac, I. Abouelfettouh, F. Acernese,, K. Ackley, C. Adamcewicz, S. Adhicary, D. Adhikar, N. Adhikari, R. X. Adhikari et al.
Physical Review Letters  Published 29 January, 2026
DOI: https://doi.org/10.1103/6c61-fm1n

Abstract

The binary black hole signal GW250114, the loudest gravitational wave detected to date, offers a unique opportunity to test Einstein’s general relativity (GR) in the high-velocity, strong-gravity regime and probe whether the remnant conforms to the Kerr metric. Upon perturbation, black holes emit a spectrum of damped sinusoids with specific, complex frequencies. Our analysis of the postmerger signal shows that at least two quasinormal modes are required to explain the data, with the most damped remaining statistically significant for about one cycle. We probe the remnant’s Kerr nature by constraining the spectroscopic pattern of the dominant quadrupolar (ℓ= m =2) mode and its first overtone to match the Kerr prediction to tens of percent at multiple postpeak times. The measured mode amplitudes and phases agree with a numerical-relativity simulation having parameters close to GW250114. By fitting a parametrized waveform that incorporates the full inspiral-merger-ringdown sequence, we constrain the fundamental (ℓ= m =4) mode to tens of percent and bound the quadrupolar frequency to within a few percent of the GR prediction. We perform a suite of tests—spanning inspiral, merger, and ringdown—finding constraints that are comparable to, and in some cases 2–3 times more stringent than those obtained by combining dozens of events in the fourth Gravitational-Wave Transient Catalog. These results constitute the most stringent single-event verification of GR and the Kerr nature of black holes to date, and outline the power of black-hole spectroscopy for future gravitational-wave observations.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました