水素燃料補給所の分布ミスで年間数千万ユーロの損失の可能性(Planned hydrogen refuelling stations may lead to millions of euros in yearly losses)

2025-08-19 チャルマース工科大学

チャルマース工科大学の研究によると、EU規則(AFIR)が定める水素燃料ステーションの一律整備は需要と乖離し、特に交通量の少ない国では年間数千万ユーロ規模の損失を招く恐れがある。研究チームは欧州全域の60万件の貨物ルートと地形データを解析し、2050年の需要を推定。フランスでは規定の7倍の供給力が必要となる一方、ブルガリアやルーマニアなどでは過剰投資が懸念されることが判明した。また、傾斜や速度など地形要因が水素需要に大きく影響することも示され、従来の平均消費モデルの限界を浮き彫りにした。長距離輸送は水素、短距離はバッテリー車が主流となる見通しであり、本成果は2026年のAFIR評価に向け需給に基づく柔軟なインフラ整備の必要性を提言している。

<関連情報>

欧州における長距離トラックの水素需要と再充填インフラの地理空間分布 Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe

Joel Löfving, Selma Brynolf, Maria Grahn
International Journal of Hydrogen Energy  Available online: 18 April 2025
DOI:https://doi.org/10.1016/j.ijhydene.2025.04.257

Graphical abstract

水素燃料補給所の分布ミスで年間数千万ユーロの損失の可能性(Planned hydrogen refuelling stations may lead to millions of euros in yearly losses)

Highlights

  • Countries’ AFIR H2-capacity may misalign with future H2 demand from trucks.
  • Showing the added H2-capacity needed per EU country by 2050.
  • Topography and speed important when modeling H2-infrastructure location.
  • Scalable model for simulating energy demand from a large number of vehicles.
  • Data on modeled H2 demand and refueling infrastructure for 2050 provided.

Abstract

Using hydrogen as a fuel is one option to reduce impact on climate and environment from heavy-duty road transportation. However, the deployment of a hydrogen refueling network is a major bottleneck. To facilitate this development, it is crucial to better understand appropriate location and sizing of hydrogen refueling stations (HRS). We present a bottom-up, geographically detailed model for simulating energy demand from long-haul hydrogen trucks and determining locations and sizes of HRSs, across all of Europe under different scenarios in 2050. The model, called SVENG, calculates weighted energy demand for network links, considering specific local conditions on each link along the route. These are used by a search algorithm for distributing demand along individual routes and simulate HRS locations and sizes. The model scales linearly, supporting large networks; for this study using 0.6 million rows of origin-destination cargo flow data on a network of 17,000 nodes. We show that the model’s novel functionality for calculating dynamic vehicle power requirements has a large impact on the distribution of fuel demand and required refueling infrastructure. Results are compared to the Alternative Fuels Infrastructure Regulation (AFIR) for 2030, showing that this legislation might require more HRS than necessary even in 2050 in some countries, unless vehicle sales increase rapidly. Other countries may need to deploy more capacity by 2050 even at lower rates of adoption.

0108交通物流機械及び建設機械
ad
ad
Follow
ad
タイトルとURLをコピーしました