新シミュレーションでアクシオンの質量が精密に、ダークマター探索の焦点定まる。(New simulations refine axion mass, refocusing dark matter search)

ad

2022-02-25 カリフォルニア大学バークレー校(UCB)

バークレー研究所の国立エネルギー研究科学計算センター(NERSC)でのシミュレーションの結果、アクシオンの質量は、理論家や実験者が考えていたよりも2倍以上大きく、40~180マイクロ電子ボルト(マイクロeV、μeV)、すなわち電子の約100億分の1の質量であることが判明した。
サフディによれば、この質量は65μeVに近いということだ。40年前に物理学者がアクシオンを探し始めて以来、その質量は数μeVから500μeVまで、大きく変動してきた。

<関連情報>

適応的メッシュ細分化によるアクシオン弦からの暗黒物質の生成 Dark matter from axion strings with adaptive mesh refinement

Malte Buschmann, Joshua W. Foster, Anson Hook, Adam Peterson, Don E. Willcox, Weiqun Zhang & Benjamin R. Safdi
Article Open Access Published: 25 February 2022 Nature Communications volume 13, Article number: 1049 (2022)

figure 1

Abstract

Axions are hypothetical particles that may explain the observed dark matter density and the non-observation of a neutron electric dipole moment. An increasing number of axion laboratory searches are underway worldwide, but these efforts are made difficult by the fact that the axion mass is largely unconstrained. If the axion is generated after inflation there is a unique mass that gives rise to the observed dark matter abundance; due to nonlinearities and topological defects known as strings, computing this mass accurately has been a challenge for four decades. Recent works, making use of large static lattice simulations, have led to largely disparate predictions for the axion mass, spanning the range from 25 microelectronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refinement simulations are better suited for axion cosmology than the previously-used static lattice simulations because only the string cores require high spatial resolution. Using dedicated adaptive mesh refinement simulations we obtain an over three order of magnitude leap in dynamic range and provide evidence that axion strings radiate their energy with a scale-invariant spectrum, to within ~5% precision, leading to a mass prediction in the range (40,180) microelectronvolts.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました