2021-12-02 アメリカ合衆国・カリフォルニア大学リバーサイド校(UCR)
・ UCR が、アメンボを始めとする水表生物(neustons)から名付けられた、サステナブルでソフトな光駆動のロボティックフィルム、「Neusbot」を開発。
・ 光に反応して折り曲がるフィルムは他にも開発されているが、本研究では光を使った調整可能な機械的振動の発生に成功。3 層のフィルムから構成され、それらのフィルムの再利用も可能。
・ 酸化鉄・銅ナノロッドを含有するハイドロゲルの中間層で光のエネルギーを熱に変換して水を蒸発させ、これを動力としてあらゆる水域の水面上でフィルムを推進させる。
・ 最下層は疎水性のため波に飲まれても水面に浮かび上がり、フィルム全体は高塩濃度にも無傷で耐久。また、光源の角度を変えることで進行方向を自由にコントロールできる。
・ 現在は 3 層構造だが、油分や化学物質を吸収できる 4 層目を追加したバージョンの試験を予定。流出した石油や飲料水の汚染源の除去を水面で実施することを想定。振動モードをより精密に制御し、より複雑な挙動の能力の実現を目指す。
URL: https://news.ucr.edu/articles/2021/12/02/light-powered-soft-robots-could-suck-oil-spills
<NEDO海外技術情報より>
(関連情報)
Science Robotics 掲載論文(アブストラクトのみ:全文は有料)
Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming
URL: https://www.science.org/doi/10.1126/scirobotics.abi4523
Abstract
Oscillation plays a vital role in the survival of living organisms in changing environments, and its relevant research has inspired many biomimetic approaches to soft autonomous robotics. However, it remains challenging to create mechanical oscillation that can work under constant energy input and actively adjust the oscillation mode. Here, a steam-driven photothermal oscillator operating under constant light irradiation has been developed to perform continuous or pulsed, damped harmonic mechanical oscillations. The key component of the oscillator comprises a hydrogel containing Fe3O4/Cu hybrid nanorods, which can convert light into heat and generate steam bubbles. Controllable perturbation to the thermomechanical equilibrium of the oscillator can thus be achieved, leading to either continuous or pulsed oscillation depending on the light intensity. Resembling the conventional heat steam engine, this environment-dictated multimodal oscillator uses steam as the working fluid, enabling the design of self-adaptive soft robots that can actively adjust their body functions and working modes in response to environmental changes. An untethered biomimetic neuston-like robot is further developed based on this soft steam engine, which can adapt its locomotion mechanics between uniform and recurrent swimming to light intensity changes and perform on-demand turning under continuous light irradiation. Fueled by water and remotely powered by light, this unique hydrogel oscillator enables easy control over the oscillation dynamics and modes, offering an effective approach to self-adaptive soft robots and solar steam engines.